DNA-antiviral vaccines: New developments and approaches - A review

被引:32
作者
Giese, M [1 ]
机构
[1] Boehringer Ingelheim Vetmed, Int Div, D-55216 Ingelheim, Germany
关键词
DNA vaccines; DNA immunization; genetic vaccines; nucleic acid vaccine; vaccine development; safety; antibody; cytotoxic T lymphocytes; dendritic cells; gene therapy;
D O I
10.1023/A:1008013720032
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Current vaccines can be divided into ''live,'' ''recombinant'' and ''killed'' vaccines. Live vaccines are traditionally composed of attenuated viruses or bacteria, selected for their reduced pathogenicity. Recombinant vaccines, driven by a viral or bacterial vector express foreign antigens, or only recombinant proteins injected as antigen. Killed vaccines consist of inactivated whole pathogens. But all these traditional vaccines have some disadvantages: Attenuated live vaccine are able to undergo mutation and as mutated viruses or bacteria can now provoke the diseases against which the vaccine should protect the organism. A further disadvantage of live vaccines is the possibility of shedding which is a real problem especially in veterinary medicine. Clearly, there is a need for better vaccines to protect against diseases without the disadvantages associated with vaccines presently in use. Modern vaccines might be characterized as safe, no risk of reversion to pathogenicity, and they should be stable without the necessity of a "cold chain." Production should be simple, standardized and inexpensive. Vaccine development has now been improved by the ability to use direct inoculations of plasmid DNA encoding viral or bacterial proteins. One of the major benefits of DNA-vaccines, variously termed "DNA-, genetic- or nucleic acid-immunization," is the endogenous synthesis of the encoded protein. Therefore DNA vaccines mimic natural infection and provoke both strong humoral and cellular immune response. This review summarizes new developments and approaches of DNA vaccination and explains the construction of expression plasmids as well as possible mechanisms of immune responses.
引用
收藏
页码:219 / 232
页数:14
相关论文
共 81 条
[1]   HUMAN DYSTROPHIN EXPRESSION IN MDX MICE AFTER INTRAMUSCULAR INJECTION OF DNA CONSTRUCTS [J].
ACSADI, G ;
DICKSON, G ;
LOVE, DR ;
JANI, A ;
WALSH, FS ;
GURUSINGHE, A ;
WOLFF, JA ;
DAVIES, KE .
NATURE, 1991, 352 (6338) :815-818
[2]   The ubiquitin-dependent proteolytic pathway in skeletal muscle: Its role in pathological states [J].
Argiles, JM ;
LopezSoriano, FJ .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1996, 17 (06) :223-226
[3]   Dendritic cells and the control of immunity [J].
Banchereau, J ;
Steinman, RM .
NATURE, 1998, 392 (6673) :245-252
[4]   Enhanced response to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction [J].
Boyle, JS ;
Brady, JL ;
Lew, AM .
NATURE, 1998, 392 (6674) :408-411
[5]   Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope [J].
Casares, S ;
Inaba, K ;
Brumeanu, TD ;
Steinman, RM ;
Bona, CA .
JOURNAL OF EXPERIMENTAL MEDICINE, 1997, 186 (09) :1481-1486
[6]   Improvement of hepatitis B virus DNA vaccines by plasmids coexpressing hepatitis B surface antigen and interleukin-2 [J].
Chow, YH ;
Huang, WL ;
Chi, WK ;
Chu, YD ;
Tao, MH .
JOURNAL OF VIROLOGY, 1997, 71 (01) :169-178
[7]   DNA-based immunization by in vivo transfection of dendritic cells [J].
Condon, C ;
Watkins, SC ;
Celluzzi, CM ;
Thompson, K ;
Falo, LD .
NATURE MEDICINE, 1996, 2 (10) :1122-1128
[8]   Gene vaccination with naked plasmid DNA: Mechanism of CTL priming [J].
Corr, M ;
Lee, DJ ;
Carson, DA ;
Tighe, H .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (04) :1555-1560
[9]   Structure and functions of the 20S and 26S proteasomes [J].
Coux, O ;
Tanaka, K ;
Goldberg, AL .
ANNUAL REVIEW OF BIOCHEMISTRY, 1996, 65 :801-847
[10]   BOVINE HERPESVIRUS-1 - IMMUNE-RESPONSES IN MICE AND CATTLE INJECTED WITH PLASMID DNA [J].
COX, GJM ;
ZAMB, TJ ;
BABIUK, LA .
JOURNAL OF VIROLOGY, 1993, 67 (09) :5664-5667