Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor

被引:190
作者
Crow, Megan [1 ]
Paul, Anirban [1 ]
Ballouz, Sara [1 ]
Huang, Z. Josh [1 ]
Gillis, Jesse [1 ]
机构
[1] Cold Spring Harbor Lab, One Bungtown Rd, Cold Spring Harbor, NY 11724 USA
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
MOUSE; TRANSCRIPTOMICS; CLASSIFICATION; DIMENSIONALITY; DIVERSITY; FEATURES; NETWORK; NEURONS;
D O I
10.1038/s41467-018-03282-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell RNA-sequencing (scRNA-seq) technology provides a new avenue to discover and characterize cell types; however, the experiment-specific technical biases and analytic variability inherent to current pipelines may undermine its replicability. Meta-analysis is further hampered by the use of ad hoc naming conventions. Here we demonstrate our replication framework, MetaNeighbor, that quantifies the degree to which cell types replicate across datasets, and enables rapid identification of clusters with high similarity. We first measure the replicability of neuronal identity, comparing results across eight technically and biologically diverse datasets to define best practices for more complex assessments. We then apply this to novel interneuron subtypes, finding that 24/45 subtypes have evidence of replication, which enables the identification of robust candidate marker genes. Across tasks we find that large sets of variably expressed genes can identify replicable cell types with high accuracy, suggesting a general route forward for large-scale evaluation of scRNA-seq data.
引用
收藏
页数:12
相关论文
共 60 条
[1]  
[Anonymous], 2016, BIOINFORMATICS
[2]  
[Anonymous], 2017, METANEIGHBOR METHOD
[3]   Petilla terminology:: nomenclature of features of GABAergic interneurons of the cerebral cortex [J].
Ascoli, Giorgio A. ;
Alonso-Nanclares, Lidia ;
Anderson, Stewart A. ;
Barrionuevo, German ;
Benavides-Piccione, Ruth ;
Burkhalter, Andreas ;
Buzsaki, Gyoergy ;
Cauli, Bruno ;
DeFelipe, Javier ;
Fairen, Alfonso ;
Feldmeyer, Dirk ;
Fishell, Gord ;
Fregnac, Yves ;
Freund, Tamas F. ;
Gardner, Daniel ;
Gardner, Esther P. ;
Goldberg, Jesse H. ;
Helmstaedter, Moritz ;
Hestrin, Shaul ;
Karube, Fuyuki ;
Kisvarday, Zoltan F. ;
Lambolez, Bertrand ;
Lewis, David A. ;
Marin, Oscar ;
Markram, Henry ;
Munoz, Alberto ;
Packer, Adam ;
Petersen, Carl C. H. ;
Rockland, Kathleen S. ;
Rossier, Jean ;
Rudy, Bernardo ;
Somogyi, Peter ;
Staiger, Jochen F. ;
Tamas, Gabor ;
Thomson, Alex M. ;
Toledo-Rodriguez, Maria ;
Wang, Yun ;
West, David C. ;
Yuste, Rafael .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (07) :557-568
[4]   Guidance for RNA-seq co-expression network construction and analysis: safety in numbers [J].
Ballouz, S. ;
Verleyen, W. ;
Gillis, J. .
BIOINFORMATICS, 2015, 31 (13) :2123-2130
[5]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]  
Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/nmeth.2645, 10.1038/NMETH.2645]
[8]   Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells [J].
Buettner, Florian ;
Natarajan, Kedar N. ;
Casale, F. Paolo ;
Proserpio, Valentina ;
Scialdone, Antonio ;
Theis, Fabian J. ;
Teichmann, Sarah A. ;
Marioni, John C. ;
Stegie, Oliver .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :155-160
[9]  
Butler A., 2017, INTEGRATED ANAL SING
[10]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87