Human bloom protein stimulates flap endonuclease 1 activity by resolving DNA secondary structure

被引:42
作者
Wang, WS [1 ]
Bambara, RA [1 ]
机构
[1] Univ Rochester, Sch Med & Dent, Dept Biochem & Biophys, Rochester, NY 14642 USA
关键词
D O I
10.1074/jbc.M412359200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Flap endonuclease 1 (FEN1) participates in removal of RNA primers of Okazaki fragments, several DNA repair pathways, and genome stability maintenance. Defects in yeast FEN1 produce chromosomal instability, hyper-recombination, and sequence duplication. These occur because flaps produced during replication are not promptly removed. Long-lived flaps sustain breaks and form misaligned bubble structures that produce duplications. Flaps that can form secondary structure inhibit even wild-type FEN1 and are more likely to form bubbles. Although proliferating cell nuclear antigen stimulates FEN1, it cannot resolve secondary structures. Bloom protein (BLM) is a 3'-5' helicase, mutated in Bloom syndrome. BLM has been reported to interact with and stimulate FEN1 independent of helicase function. We found activation of the helicase by ATP did not alter BLM stimulation of cleavage of unstructured flaps. However, BLM stimulation of FEN1 cleavage of foldback flaps, bubbles, or triplet repeats was increased by an additional increment when ATP was added. Helicase-dependent stimulation of FEN1 cleavage was robust over a range of sizes of the single-stranded part of bubbles. However, increasing the length of the 5' annealed region of the bubble ultimately counteracted the stimulatory capacity of the BLM helicase. Moderate helicase-dependent stimulation was observed with both fixed and equilibrating CTG flaps. Our results suggest that BLM suppresses genome instability by aiding FEN1 cleavage of structure-containing flaps.
引用
收藏
页码:5391 / 5399
页数:9
相关论文
共 63 条
[1]   Okazaki fragment maturation in yeast - I. Distribution of functions between FEN1 AND DNA2 [J].
Ayyagari, R ;
Gomes, XV ;
Gordenin, DA ;
Burgers, PMJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (03) :1618-1625
[2]   Coupling of DNA helicase and endonuclease activities of yeast Dna2 facilitates Okazaki fragment processing. [J].
Bae, SH ;
Kim, DW ;
Kim, J ;
Kim, JH ;
Kim, DH ;
Kim, HD ;
Kang, HY ;
Seo, YS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (29) :26632-26641
[3]   RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes [J].
Bae, SH ;
Bae, KH ;
Kim, JA ;
Seo, YS .
NATURE, 2001, 412 (6845) :456-461
[4]   Enzymes and reactions at the eukaryotic DNA replication fork [J].
Bambara, RA ;
Murante, RS ;
Henricksen, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (08) :4647-4650
[5]   Effect of flap modifications on human FEN1 cleavage [J].
Bornarth, CJ ;
Ranalli, TA ;
Henricksen, LA ;
Wahl, AF ;
Bambara, RA .
BIOCHEMISTRY, 1999, 38 (40) :13347-13354
[6]   Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity [J].
Brosh, RM ;
Li, JL ;
Kenny, MK ;
Karow, JK ;
Cooper, MP ;
Kureekattil, RP ;
Hickson, ID ;
Bohr, VA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23500-23508
[7]  
Brosh RM, 2001, EMBO J, V20, P5791
[8]   The nuclease activity of the yeast Dna2 protein, which is related to the RecB-like nucleases, is essential in vivo [J].
Budd, ME ;
Choe, WC ;
Campbell, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (22) :16518-16529
[9]   DNA2 ENCODES A DNA HELICASE ESSENTIAL FOR REPLICATION OF EUKARYOTIC CHROMOSOMES [J].
BUDD, ME ;
CHOE, WC ;
CAMPBELL, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (45) :26766-26769
[10]   A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function [J].
Budd, ME ;
Campbell, JL .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (04) :2136-2142