The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40

被引:50
作者
Wu, YK
Li, JZ
Jin, ZM
Fu, ZQ
Sha, BD
机构
[1] Univ Alabama, Dept Cell Biol, Ctr Biophys Sci & Engn, Birmingham, AL 35294 USA
[2] Argonne Natl Lab, SER CAT, APS, Argonne, IL 60439 USA
[3] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
关键词
molecular chaperone; Hsp40; Ydj1; dimer; crystal structure;
D O I
10.1016/j.jmb.2004.12.040
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular chaperone Hsp40 functions as a dimer. The dimer formation is critical for Hsp40 molecular chaperone activity to facilitate Hsp70 to refold non-native polypeptides. We have determined the crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 that is responsible for Ydj1 dimerization by MAD method. The C-terminal fragment of Ydj1 comprises of the domain III of Ydj1 and the Ydj1 C-terminal dimerization motif. The crystal structure indicates that the dimerization motif of type 1 Hsp40 Ydj1 differs significantly from that of yeast type 11 Hsp40. The C terminus of type I Hsp40 Ydj1 from one monomer forms beta-strands with the domain III from the other monomer in the homo-dimer. The L372 from Ydj1 C terminus inserts its side-chain into a hydrophobic pocket on domain III. The modeled full-length Ydj1 dimer structure reveals that a large cleft is formed between the two monomers. The domain IIs of Ydj1 monomers that contain the zinc-finger motifs points directly against each other. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1005 / 1011
页数:7
相关论文
共 20 条
[1]   Structure-function analysis of the zinc finger region of the DnaJ molecular chaperone [J].
Banecki, B ;
Liberek, K ;
Wall, D ;
Wawrzynow, A ;
Georgopoulos, C ;
Bertoli, E ;
Tanfani, F ;
Zylicz, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (25) :14840-14848
[2]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[3]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[4]   CHARACTERIZATION OF YDJ1 - A YEAST HOMOLOG OF THE BACTERIAL DNAJ PROTEIN [J].
CAPLAN, AJ ;
DOUGLAS, MG .
JOURNAL OF CELL BIOLOGY, 1991, 114 (04) :609-621
[5]   RIBBON MODELS OF MACROMOLECULES [J].
CARSON, M .
JOURNAL OF MOLECULAR GRAPHICS, 1987, 5 (02) :103-&
[6]   Molecular chaperones in cellular protein folding [J].
Hartl, FU .
NATURE, 1996, 381 (6583) :571-580
[7]   Protein folding - Molecular chaperones in the cytosol: from nascent chain to folded protein [J].
Hartl, FU ;
Hayer-Hartl, M .
SCIENCE, 2002, 295 (5561) :1852-1858
[8]   DETERMINATION OF MACROMOLECULAR STRUCTURES FROM ANOMALOUS DIFFRACTION OF SYNCHROTRON RADIATION [J].
HENDRICKSON, WA .
SCIENCE, 1991, 254 (5028) :51-58
[9]   IMPROVED METHODS FOR BUILDING PROTEIN MODELS IN ELECTRON-DENSITY MAPS AND THE LOCATION OF ERRORS IN THESE MODELS [J].
JONES, TA ;
ZOU, JY ;
COWAN, SW ;
KJELDGAARD, M .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :110-119
[10]   SUCCESSIVE ACTION OF DNAK, DNAJ AND GROEL ALONG THE PATHWAY OF CHAPERONE-MEDIATED PROTEIN FOLDING [J].
LANGER, T ;
LU, C ;
ECHOLS, H ;
FLANAGAN, J ;
HAYER, MK ;
HARTL, FU .
NATURE, 1992, 356 (6371) :683-689