Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves

被引:148
作者
Randau, L
Münch, R
Hohn, MJ
Jahn, D
Söll, D
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Mikrobiol, D-38023 Braunschweig, Germany
[3] Univ Regensburg, Lehrstuhl Mikrobiol, D-93053 Regensburg, Germany
[4] Univ Regensburg, Archaeenzentrum, D-93053 Regensburg, Germany
[5] Yale Univ, Dept Chem, New Haven, CT 06520 USA
关键词
D O I
10.1038/nature03233
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analysis of the genome sequence of the small hyperthermophilic archaeal parasite Nanoarchaeum equitans(1,2) has not revealed genes encoding the glutamate, histidine, tryptophan and initiator methionine transfer RNA species. Here we develop a computational approach to genome analysis that searches for widely separated genes encoding tRNA halves that, on the basis of structural prediction, could form intact tRNA molecules. A search of the N. equitans genome reveals nine genes that encode tRNA halves; together they account for the missing tRNA genes. The tRNA sequences are split after the anticodon-adjacent position 37, the normal location of tRNA introns. The terminal sequences can be accommodated in an intervening sequence that includes a 12 - 14-nucleotide GC-rich RNA duplex between the end of the 50 tRNA half and the beginning of the 30 tRNA half. Reverse transcriptase polymerase chain reaction and amino-acylation experiments of N. equitans tRNA demonstrated maturation to full-size tRNA and acceptor activity of the tRNA His and tRNA(Glu) species predicted in silico. As the joining mechanism possibly involves tRNA trans-splicing, the presence of an intron might have been required for early tRNA synthesis.
引用
收藏
页码:537 / 541
页数:5
相关论文
共 30 条
  • [1] tRNA splicing
    Abelson, J
    Trotta, CR
    Li, H
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) : 12685 - 12688
  • [2] Biodiversity: Something new under the sea
    Boucher, Y
    Doolittle, WF
    [J]. NATURE, 2002, 417 (6884) : 27 - 28
  • [3] G-l:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase
    Connolly, SA
    Rosen, AE
    Musier-Forsyth, K
    Francklyn, CS
    [J]. BIOCHEMISTRY, 2004, 43 (04) : 962 - 969
  • [4] Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis
    Curnow, AW
    Tumbula, DL
    Pelaschier, JT
    Min, B
    Söll, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) : 12838 - 12843
  • [5] The non-monophyletic origin of the tRNA molecule
    Di Giulio, M
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1999, 197 (03) : 403 - 414
  • [6] RNA SEQUENCE-ANALYSIS USING COVARIANCE-MODELS
    EDDY, SR
    DURBIN, R
    [J]. NUCLEIC ACIDS RESEARCH, 1994, 22 (11) : 2079 - 2088
  • [7] Conservation of substrate recognition mechanisms by tRNA splicing endonucleases
    Fabbri, S
    Fruscoloni, P
    Bufardeci, E
    Negri, EDN
    Baldi, MI
    Attardi, DG
    Mattoccia, E
    Tocchini-Valentini, GP
    [J]. SCIENCE, 1998, 280 (5361) : 284 - 286
  • [8] RNase P: Variations and uses
    Gopalan, V
    Vioque, A
    Altman, S
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (09) : 6759 - 6762
  • [9] ELEMENTS OF AN ARCHAEAL PROMOTER DEFINED BY MUTATIONAL ANALYSIS
    HAIN, J
    REITER, WD
    HUDEPOHL, U
    ZILLIG, W
    [J]. NUCLEIC ACIDS RESEARCH, 1992, 20 (20) : 5423 - 5428
  • [10] A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont
    Huber, H
    Hohn, MJ
    Rachel, R
    Fuchs, T
    Wimmer, VC
    Stetter, KO
    [J]. NATURE, 2002, 417 (6884) : 63 - 67