Fundamentals of fuzzy probability theory

被引:38
作者
Bugajski, S
机构
[1] Institute of Physics, University of Silesa
关键词
D O I
10.1007/BF02302443
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The canonical classical extension of quantum mechanics studied recently by E. G. Beltrametti and S. Bugajski opens a new way toward generalizing the standard probability theory. The emerging fuzzy probability theory is able to give a full account of both classical and quantal probabilities, and-like the standard probability theory-could be of universal use, far outside the borders of physics. A specific feature of this hypothetical theory of probability is its mixed, classical-quanta character: classical as well as quantal random variables are described on an equal footing in a unified framework. Some new features of the fuzzy probability theory are shown on simple examples.
引用
收藏
页码:2229 / 2244
页数:16
相关论文
共 25 条
[1]  
Alfsen E M., 1971, Ergebnisse der Mathematik und ihrer Grenzgebiete
[2]   SYSTEMS OF IMPRIMITIVITY AND REPRESENTATIONS OF QUANTUM-MECHANICS ON FUZZY PHASE SPACES [J].
ALI, ST ;
PRUGOVECKI, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (02) :219-228
[3]   EXPERIMENTAL REALIZATION OF EINSTEIN-PODOLSKY-ROSEN-BOHM GEDANKENEXPERIMENT - A NEW VIOLATION OF BELL INEQUALITIES [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (02) :91-94
[4]   PROPOSED EXPERIMENT TO TEST NONSEPARABILITY OF QUANTUM-MECHANICS [J].
ASPECT, A .
PHYSICAL REVIEW D, 1976, 14 (08) :1944-1951
[5]   EXPERIMENTAL TESTS OF REALISTIC LOCAL THEORIES VIA BELLS THEOREM [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1981, 47 (07) :460-463
[6]  
BAUER H, 1981, PROBABILITY THEORY E
[7]  
Bell JS., 1964, Phys. Phys. Fiz., V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[8]  
Beltrametti E. G., 1981, The Logic of Quantum Mechanics
[9]   A CLASSICAL EXTENSION OF QUANTUM-MECHANICS [J].
BELTRAMETTI, EG ;
BUGAJSKI, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (12) :3329-3343
[10]  
BELTRAMETTI EG, 1996, IN PRESS J PHYSICS A