Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent

被引:346
作者
Li, ZS [1 ]
Cai, NS [1 ]
Huang, YY [1 ]
Han, HJ [1 ]
机构
[1] Tsing Hua Univ, Dept Thermal Engn, Beijing 100084, Peoples R China
关键词
D O I
10.1021/ef0496799
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A new kind of Ca-based regenerable CO2 absorbent, CaO/Ca12Al14O33, was synthesized on the basis of the integration of CaO, as solid reactant, with a composite metal oxide Ca12Al14O33, as a binder, for applying it to repeated calcination/carbonation cycles. The carbonation reaction can be applied in many industrial processes, and it is important for practical calcination/carbonation processes to have absorbents with high performance. The cyclic carbonation reactivity of the new absorbent was investigated by TGA (thermogravimetric analysis). The effects of the ratio of active material to binder in the new absorbent, the mechanics for preparation, and the reaction process of the high-reactivity CaO/Cal(2)Al(14)O(33) absorbent have been analyzed. The results obtained here indicate that the new absorbent, CaO/Ca12Al14O33, has a significantly improved CO2 absorption capacity and cyclic reaction stability compared with other Ca-based CO2 absorbents. These results suggest that this new absorbent is promising in the application of calcination/carbonation reactions.
引用
收藏
页码:1447 / 1452
页数:6
相关论文
共 23 条
[1]   Conversion limits in the reaction of CO2 with lime [J].
Abanades, JC ;
Alvarez, D .
ENERGY & FUELS, 2003, 17 (02) :308-315
[2]   The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3 [J].
Abanades, JC .
CHEMICAL ENGINEERING JOURNAL, 2002, 90 (03) :303-306
[3]   Hydrogen from methane in a single-step process [J].
Balasubramanian, B ;
Ortiz, AL ;
Kaytakoglu, S ;
Harrison, DP .
CHEMICAL ENGINEERING SCIENCE, 1999, 54 (15-16) :3543-3552
[4]  
BARKER R, 1973, J APPL CHEM BIOTECHN, V23, P733
[5]   REACTIVITY OF CALCIUM-OXIDE TOWARDS CARBON-DIOXIDE AND ITS USE FOR ENERGY-STORAGE [J].
BARKER, R .
JOURNAL OF APPLIED CHEMISTRY AND BIOTECHNOLOGY, 1974, 24 (4-5) :221-227
[7]   SURFACE-AREA REDUCTION DURING ISOTHERMAL SINTERING [J].
GERMAN, RM ;
MUNIR, ZA .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1976, 59 (9-10) :379-383
[8]   Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas [J].
Gupta, H ;
Fan, LS .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (16) :4035-4042
[9]   Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen [J].
Han, Chun ;
Harrison, Douglas P. .
CHEMICAL ENGINEERING SCIENCE, 1994, 49 (24B) :5875-5883
[10]   Mechanism of high-temperature CO2 sorption on lithium zirconate [J].
Ida, J ;
Lin, YS .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (09) :1999-2004