Multiple imputation for missing data: Making the most of what you know

被引:140
作者
Fichman, M
Cummings, JN
机构
[1] Carnegie Mellon Univ, Grad Sch Ind Adm, Pittsburgh, PA 15213 USA
[2] MIT, Alfred P Sloan Sch Management, Cambridge, MA 02139 USA
关键词
missing data; multivariate analysis; multiple imputation; statistical estimation; Internet use;
D O I
10.1177/1094428103255532
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Missing data are a common problem in organizational research. Missing data can occur due to attrition in a longitudinal study or nonresponse to questionnaire items in a laboratory or field setting. Improper treatments of missing data (e.g., listwise deletion, mean imputation) can lead to biased statistical inference using complete case analysis statistical techniques. This article presents a simulation and data analysis case study using a method for dealing with missing data, multiple imputation, that allows for valid statistical inference with complete case statistical analysis. Software for implementing multiple imputation under a multivariate normal model is freely and widely available (e.g., NORM, SAS, SOLAS). It should be routinely considered for imputing missing data. The authors illustrate the application of this technique using data from the HomeNet project.
引用
收藏
页码:282 / 308
页数:27
相关论文
共 40 条
[1]  
Allison P., 2002, MISSING DATA
[2]   Multiple imputation for missing data - A cautionary tale [J].
Allison, PD .
SOCIOLOGICAL METHODS & RESEARCH, 2000, 28 (03) :301-309
[3]   AN INTRODUCTION TO SAMPLE SELECTION BIAS IN SOCIOLOGICAL DATA [J].
BERK, RA .
AMERICAN SOCIOLOGICAL REVIEW, 1983, 48 (03) :386-398
[4]  
COHEN S, 1984, SOCIAL SUPPORT THEOR, P73
[5]   A comparison of inclusive and restrictive strategies in modern missing data procedures [J].
Collins, LM ;
Schafer, JL ;
Kam, CM .
PSYCHOLOGICAL METHODS, 2001, 6 (04) :330-351
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]   THE DESIGN AND ADMINISTRATION OF MAIL SURVEYS [J].
DILLMAN, DA .
ANNUAL REVIEW OF SOCIOLOGY, 1991, 17 :225-249
[8]   A Primer on Maximum Likelihood Algorithms Available for Use With Missing Data [J].
Enders, Craig K. .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2001, 8 (01) :128-141
[9]  
Fox J., 1986, RANDOMIZED RESPONSE
[10]  
GRAHAM J, 1994, ADV DATA ANAL PREVEN, V142