RETRACTED: Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85α, androgen receptor, and Src (Retracted Article)

被引:140
作者
Sun, M
Yang, L
Feldman, RI
Sun, XM
Bhalla, KN
Jove, R
Nicosia, SV
Cheng, JQ
机构
[1] Univ S Florida, Coll Med, Dept Pathol, Tampa, FL 33612 USA
[2] Univ S Florida, Coll Med, Dept Interdisciplinary Oncol, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr, Tampa, FL 33612 USA
[4] Berlex Biosci, Dept Canc Res, Richmond, CA 94804 USA
关键词
D O I
10.1074/jbc.M306295200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies have demonstrated that the cell growth and antiapoptotic actions of androgen could be dissociated from the transcriptional activity of the receptor and were, instead, mediated by activation of a mitogen-activated protein kinase pathway. This finding suggests an important cellular function of androgen receptor (AR) outside the nucleus. In this report, we demonstrate that androgen activates phosphatidylinositol 3-kinase (PI3K) and Akt, including AKT1 and AKT2, in AR-positive cells. Androgen-induced cell growth and survival were inhibited by PI3K inhibitor and dominant-negative Akt. AR interacts with the p85alpha regulatory subunit of PI3K, and its binding affinity is increased after androgen stimulation. The sites of interaction on the two proteins were mapped to the C-terminal Src-homology 2 domain of p85alpha and N terminus of AR. Activation of PI3K/Akt by androgen was inhibited by dominant-negative Src. Neither N-terminal-truncated nor proline-rich region-deleted AR mutants, which are unable to bind to p85alpha and Src, respectively, was able to mediate androgen-induced PI3K/Akt activation. AR with deletion of C-terminal region including ligand binding domain, however, retains the ability to activate PI3K/Akt upon androgen stimulation, which supports the notion that nongenomic function of androgen is mediated by its interaction with membrane receptors (1,3,4). These findings indicate that a triple complex between AR, p85alpha, and Src is required for androgen-stimulated PI3K/Akt activation, and that the PI3K/Akt pathway, in addition to mitogen-activated protein kinase, mediates androgen-induced cell growth and cell survival.
引用
收藏
页码:42992 / 43000
页数:9
相关论文
共 37 条
[1]   Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway [J].
Brunet, A ;
Datta, SR ;
Greenberg, ME .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :297-305
[2]   The phosphoinositide 3-kinase pathway [J].
Cantley, LC .
SCIENCE, 2002, 296 (5573) :1655-1657
[3]   Non-transcriptional action of oestradiol and progestin triggers DNA synthesis [J].
Castoria, G ;
Barone, MV ;
Di Domenico, M ;
Bilancio, A ;
Ametrano, D ;
Migliaccio, A ;
Auricchio, F .
EMBO JOURNAL, 1999, 18 (09) :2500-2510
[4]   Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit [J].
Chan, TO ;
Rodeck, U ;
Chan, AM ;
Kimmelman, AC ;
Rittenhouse, SE ;
Panayotou, G ;
Tsichlis, PN .
CANCER CELL, 2002, 1 (02) :181-191
[5]  
CHAN TO, 2001, SCI STKE, V66
[6]   AKT2, A PUTATIVE ONCOGENE ENCODING A MEMBER OF A SUBFAMILY OF PROTEIN-SERINE THREONINE KINASES, IS AMPLIFIED IN HUMAN OVARIAN CARCINOMAS [J].
CHENG, JQ ;
GODWIN, AK ;
BELLACOSA, A ;
TAGUCHI, T ;
FRANKE, TF ;
HAMILTON, TC ;
TSICHLIS, PN ;
TESTA, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (19) :9267-9271
[7]   Transforming activity and mitosis-related expression of the AKT2 oncogene: Evidence suggesting a link between cell cycle regulation and oncogenesis [J].
Cheng, JQ ;
Altomare, DA ;
Klein, MA ;
Lee, WC ;
Kruh, GD ;
Lissy, NA ;
Testa, JR .
ONCOGENE, 1997, 14 (23) :2793-2801
[8]  
CHENG JQ, 2001, CANC RES ENCY, P35
[9]   RETRACTED: Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin (Retracted Article) [J].
Dan, HC ;
Sun, M ;
Yang, L ;
Feldman, RI ;
Sui, XM ;
Ou, CC ;
Nellist, M ;
Yeung, RS ;
Halley, DJJ ;
Nicosia, SV ;
Pledger, WJ ;
Cheng, JQ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (38) :35364-35370
[10]   Akt is a direct target of the phosphatidylinositol 3-kinase - Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells [J].
Datta, K ;
Bellacosa, A ;
Chan, TO ;
Tsichlis, PN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (48) :30835-30839