Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors

被引:76
作者
Lang, P
Bader, P
Schumm, M
Feuchtinger, T
Einsele, H
Führer, M
Weinstock, C
Handgretinger, R
Kuci, S
Martin, D
Niethammer, D
Greil, J
机构
[1] Univ Tubingen, Univ Childrens Hosp, Dept Pediat Oncol, D-72076 Tubingen, Germany
[2] Univ Tubingen, Dept Internal Med, Tubingen, Germany
[3] Univ Munich, Childrens Univ Hosp, Munich, Germany
[4] Univ Tubingen, Dept Transfus Med, Tubingen, Germany
[5] St Jude Childrens Res Hosp, Memphis, TN 38105 USA
关键词
stem cell transplantation; alternative donors; CD34(+) selection; CD133(+)-selection; haploidentical;
D O I
10.1046/j.1365-2141.2003.04747.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Positive selected haematopoietic stem cells are increasingly used for allogeneic transplantation with the CD34 antigen employed in most separation techniques. However, the recently described pentaspan molecule CD133 appears to be a marker of more primitive haematopoietic progenitors. Here we report our experience with a new CD133-based selection method in 10 paediatric patients with matched unrelated (n = 2) or mismatched-related donors (n = 8). These patients received a combination of stem cells (median = 29.3 x 10(6)/kg), selected with either anti-CD34 or anti-CD133 coated microbeads. The proportion of CD133(+) selected cells was gradually increased from patient to patient from 10% to 100%. Comparison of CD133(+) and CD34(+) separation procedures revealed similar purity and recovery of target populations but a lower depletion of T cells by CD133(+) selection (3.7 log vs. 4.1 log, P < 0.001). Both separation procedures produced >90% CD34(+)/CD133(+) double positive target cells. Engraftment occurred in all patients (sustained primary, n = 8; after reconditioning, n = 2). No primary acute graft versus host disease (GvHD) greater than or equal to grade II or chronic GvHD was observed. The patients showed a rapid platelet recovery (median time to independence from substitution = 13.5 d), whereas T cell regeneration was variable. Five patients are alive with a median follow-up of 10 months. Our data demonstrates the feasibility of CD133(+) selection for transplantation from alternative donors and encourages further trials with total CD133(+) separated grafts.
引用
收藏
页码:72 / 79
页数:8
相关论文
共 24 条
[1]   Haploidentical stem cell transplantation for acute leukemia [J].
Aversa, F ;
Terenzi, A ;
Felicini, R ;
Carotti, A ;
Falcinelli, F ;
Tabilio, A ;
Velardi, A ;
Martelli, MF .
INTERNATIONAL JOURNAL OF HEMATOLOGY, 2002, 76 (Suppl 1) :165-168
[2]   Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype [J].
Aversa, F ;
Tabilio, A ;
Velardi, A ;
Cunningham, I ;
Terenzi, A ;
Falzetti, F ;
Ruggeri, L ;
Barbabietola, G ;
Aristei, C ;
Latini, P ;
Reisner, Y ;
Martelli, MF .
NEW ENGLAND JOURNAL OF MEDICINE, 1998, 339 (17) :1186-1193
[3]   A multicenter study of platelet recovery and utilization in patients after myeloablative therapy and hematopoietic stem cell transplantation [J].
Bernstein, SH ;
Nademanee, AP ;
Vose, JM ;
Tricot, G ;
Fay, JW ;
Negrin, RS ;
DiPersio, J ;
Rondon, G ;
Champlin, R ;
Barnett, MJ ;
Cornetta, K ;
Herzig, GP ;
Vaughan, W ;
Geils, G ;
Keating, J ;
Messner, H ;
Wolff, SN ;
Miller, KB ;
Linker, C ;
Cairo, M ;
Hellmann, S ;
Ashby, M ;
Stryker, S ;
Nash, RA .
BLOOD, 1998, 91 (09) :3509-3517
[4]   A newly discovered class of human hematopoietic cells with SCID-repopulating activity [J].
Bhatia, M ;
Bonnet, D ;
Murdoch, B ;
Gan, OI ;
Dick, JE .
NATURE MEDICINE, 1998, 4 (09) :1038-1045
[5]   Normal human bone marrow CD34+CD133+ cells contain primitive cells able to produce different categories of colony-forming unit megakaryocytes in vitro [J].
Charrier, S ;
Boiret, N ;
Fouassier, M ;
Berger, J ;
Rapatel, C ;
Pigeon, P ;
Mareynat, G ;
Bonhomme, J ;
Camilleri, L ;
Berger, MG .
EXPERIMENTAL HEMATOLOGY, 2002, 30 (09) :1051-1060
[6]   CD34+AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors [J].
de Wynter, EA ;
Buck, D ;
Hart, C ;
Heywood, R ;
Coutinho, LH ;
Clayton, A ;
Rafferty, JA ;
Burt, D ;
Guenechea, G ;
Bueren, JA ;
Gagen, D ;
Fairbairn, LJ ;
Lord, BI ;
Testa, NG .
STEM CELLS, 1998, 16 (06) :387-396
[7]   Allogeneic bone marrow stem cell transplantation following CD34+immunomagnetic enrichment in patients with inherited metabolic storage diseases [J].
Gaipa, G ;
Dassi, M ;
Perseghin, P ;
Venturi, N ;
Corti, P ;
Bonanomi, S ;
Balduzzi, A ;
Longoni, D ;
Uderzo, C ;
Biondi, A ;
Masera, G ;
Parini, R ;
Bertagnolio, B ;
Uziel, G ;
Peters, C ;
Rovelli, A .
BONE MARROW TRANSPLANTATION, 2003, 31 (10) :857-860
[8]   Isolation and characterization of human CD34-Lin- and CD34+Lin- hematopoietic stem cells using cell surface markers AC133 and CD7 [J].
Gallacher, L ;
Murdoch, B ;
Wu, DM ;
Karanu, FN ;
Keeney, M ;
Bhatia, M .
BLOOD, 2000, 95 (09) :2813-2820
[9]   PLACEBO-CONTROLLED PHASE-III TRIAL OF LENOGRASTIM IN BONE-MARROW TRANSPLANTATION [J].
GISSELBRECHT, C ;
PRENTICE, HG ;
BACIGALUPO, A ;
BIRON, P ;
MILPIED, N ;
RUBIE, H ;
CUNNINGHAM, D ;
LEGROS, M ;
PICO, JL ;
LINCH, DC ;
BURNETT, AK ;
SCARFFE, JH ;
SIEGERT, W ;
YVER, A .
LANCET, 1994, 343 (8899) :696-700
[10]   Large-scale isolation of CD133+progenitor cells from G-CSF mobilized peripheral blood stem cells [J].
Gordon, PR ;
Leimig, T ;
Babarin-Dorner, A ;
Houston, J ;
Holladay, M ;
Mueller, I ;
Geiger, T ;
Handgretinger, R .
BONE MARROW TRANSPLANTATION, 2003, 31 (01) :17-22