Optimality Driven Nearest Centroid Classification from Genomic Data

被引:26
作者
Dabney, Alan R. [1 ]
Storey, John D. [2 ,3 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[3] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
来源
PLOS ONE | 2007年 / 2卷 / 10期
关键词
D O I
10.1371/journal.pone.0001002
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nearest-centroid classifiers have recently been successfully employed in high-dimensional applications, such as in genomics. A necessary step when building a classifier for high-dimensional data is feature selection. Feature selection is frequently carried out by computing univariate scores for each feature individually, without consideration for how a subset of features performs as a whole. We introduce a new feature selection approach for high-dimensional nearest centroid classifiers that instead is based on the theoretically optimal choice of a given number of features, which we determine directly here. This allows us to develop a new greedy algorithm to estimate this optimal nearest-centroid classifier with a given number of features. In addition, whereas the centroids are usually formed from maximum likelihood estimates, we investigate the applicability of high-dimensional shrinkage estimates of centroids. We apply the proposed method to clinical classification based on gene-expression microarrays, demonstrating that the proposed method can outperform existing nearest centroid classifiers.
引用
收藏
页数:7
相关论文
共 21 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Selection bias in gene extraction on the basis of microarray gene-expression data [J].
Ambroise, C ;
McLachlan, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6562-6566
[3]  
[Anonymous], 1979, Multivariate analysis
[4]   Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations [J].
Bickel, PJ ;
Levina, E .
BERNOULLI, 2004, 10 (06) :989-1010
[5]  
Bo TH, 2002, GENOME BIOL, V3
[6]   Classification of microarrays to nearest centroids [J].
Dabney, AR .
BIOINFORMATICS, 2005, 21 (22) :4148-4154
[7]  
DABNEY AR, 2005, UW BIOSTATISTICS WOR
[8]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87
[9]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[10]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537