Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells

被引:114
作者
Chen, Fang-Xiao [1 ]
Xu, Jing-Qi [1 ,2 ]
Liu, Zhi-Xi [1 ]
Chen, Ming [1 ]
Xia, Ruoxi [3 ]
Yang, Yongchao [3 ]
Lau, Tsz-Ki [4 ]
Zhang, Yingzhu [1 ]
Lu, Xinhui [4 ]
Yip, Hin-Lap [3 ]
Jen, Alex K. -Y. [1 ,2 ,5 ]
Chen, Hongzheng [1 ]
Li, Chang-Zhi [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[3] South China Univ Technol, Sch Mat Sci & Engn, State Key Lab Luminescent Mat & Devices, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China
[4] Chinese Univ Hong Kong, Dept Phys, Hong Kong 999077, Peoples R China
[5] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
near-infrared absorption; nonfullerene acceptors; polymer solar cells; tandem devices; TANDEM POLYMER; PERFORMANCE; DESIGN;
D O I
10.1002/adma.201803769
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solar photon-to-electron conversion with polymer solar cells (PSCs) has experienced rapid development in the recent few years. Even so, the exploration of molecules and devices in efficiently converting near-infrared (NIR) photons into electrons remains critical, yet challenging. Herein presented is a family of near-infrared nonfullerene acceptors (NIR NFAs, T1-T4) with fluorinated regioisomeric A-A pi-D-A pi-A backbones for constructing efficient single-junction and tandem PSCs with photon response up to 1000 nm. It is found that the tuning of the regioisomeric bridge (A pi) and fluoro (F)-substituents on a molecular skeleton strongly influences the backbone conformation and conjugation, leading to the optimized optoelectronic and stable stacking of resultant NFAs, which eventually impacts the performance of derived PSCs. In PSCs, the proximal NFAs with varied F-atoms (T1-T3) mostly outperform than that of distal NFA (T4). Notably, single-junction PSC with PTB7-Th:T2 blend can reach 10.87% power conversion efficiency (PCE), after implementing a solvent additive to improve blend morphology. Moreover, efficient tandem PSCs are fabricated through integrating such NIR cells with mediate bandgap nonfullerene-based subcells, to achieve a PCE of 14.64%. The results reveal the structural design of organic semiconductor and device with improved photovoltaic performance.
引用
收藏
页数:8
相关论文
共 46 条
[1]  
[Anonymous], ADV MAT
[2]   High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency [J].
Che, Xiaozhou ;
Li, Yongxi ;
Qu, Yue ;
Forrest, Stephen R. .
NATURE ENERGY, 2018, 3 (05) :422-427
[3]   High-performance semi-transparent polymer solar cells possessing tandem structures [J].
Chen, Chun-Chao ;
Dou, Letian ;
Gao, Jing ;
Chang, Wei-Hsuan ;
Li, Gang ;
Yang, Yang .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (09) :2714-2720
[4]   Synthesis of Conjugated Polymers for Organic Solar Cell Applications [J].
Cheng, Yen-Ju ;
Yang, Sheng-Hsiung ;
Hsu, Chain-Shu .
CHEMICAL REVIEWS, 2009, 109 (11) :5868-5923
[5]   Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells [J].
Chueh, Chu-Chen ;
Li, Chang-Zhi ;
Jen, Alex K. -Y. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (04) :1160-1189
[6]   Organic Solar Cells with an Efficiency Approaching 15% [J].
Cui, Yong ;
Yao, Hui-feng ;
Yang, Chen-yi ;
Zhang, Shao-qing ;
Hou, Jian-hui .
ACTA POLYMERICA SINICA, 2018, (02) :223-230
[7]   Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell [J].
Cui, Yong ;
Yao, Huifeng ;
Gao, Bowei ;
Qin, Yunpeng ;
Zhang, Shaoqing ;
Yang, Bei ;
He, Chang ;
Xu, Bowei ;
Hou, Jianhui .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (21) :7302-7309
[8]   Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics [J].
Dou, Letian ;
Liu, Yongsheng ;
Hong, Ziruo ;
Li, Gang ;
Yang, Yang .
CHEMICAL REVIEWS, 2015, 115 (23) :12633-12665
[9]  
Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356]
[10]   High-Performance Nonfullerene Polymer Solar Cells based on Imide-Functionalized Wide-Bandgap Polymers [J].
Fan, Baobing ;
Zhang, Kai ;
Jiang, Xiao-Fang ;
Ying, Lei ;
Huang, Fei ;
Cao, Yong .
ADVANCED MATERIALS, 2017, 29 (21)