Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC)

被引:678
作者
Mathew, AP
Oksman, K [1 ]
Sain, M
机构
[1] Norwegian Univ Sci & Technol, Dept Engn Design & Mat, N-7034 Trondheim, Norway
[2] Univ Toronto, Fac Forestry & Chem Engn, Ctr Earth Sci, Toronto, ON, Canada
关键词
bio-composites; microcrystalline cellulose; morphology; dynamic mechanical thermal properties; mechanical properties;
D O I
10.1002/app.21779
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biodegradable composites were prepared using microcrystalline cellulose (MCC) as the reinforcement and polylactic acid (PLA) as a matrix. PLA is polyester of lactic acid and MCC is cellulose derived from high quality wood pulp by acid hydrolysis to remove the amorphous regions. The composites were prepared with different MCC contents, up to 25 wt '%, and wood flour (WF) and wood pulp (WP) were used as reference materials. Generally, the MCC/PLA composites showed lower mechanical properties compared to the reference materials. The dynamic mechanical thermal analysis (DMTA) showed that the storage modulus was increased with the addition of MCC. The X-ray diffraction (XRD) studies on the materials showed that the composites were less crystalline than the pure components. However, the scanning electron microscopy (SEM) study of materials showed that the MCC was remaining as aggregates of crystalline cellulose fibrils, which explains the poor mechanical properties. Furthermore, the fracture surfaces of MCC composites were indicative of poor adhesion between MCC and the PLA matrix. Biodegradation studies in compost soil at 58 degrees C showed that WF composites have better biodegradability compared to WP and MCC composites. The composite performances are expected to improve by separation of the cellulose aggregates to microfibrils and with improved adhesion. (C) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:2014 / 2025
页数:12
相关论文
共 43 条
[1]   Plasticized starch/tunicin whiskers nanocomposites.: 1.: Structural analysis [J].
Anglès, MN ;
Dufresne, A .
MACROMOLECULES, 2000, 33 (22) :8344-8353
[2]  
Anglès MN, 1999, J APPL POLYM SCI, V74, P1962
[3]  
[Anonymous], 1997, LIGNOCELLULOSIC PLAS
[4]   Flow-induced fiber orientation in injection molded flax fiber reinforced polypropylene [J].
Aurich, T ;
Mennig, G .
POLYMER COMPOSITES, 2001, 22 (05) :680-689
[5]   Plasticized starch-cellulose interactions in polysaccharide composites [J].
Avérous, L ;
Fringant, C ;
Moro, L .
POLYMER, 2001, 42 (15) :6565-6572
[6]   Composites reinforced with cellulose based fibres [J].
Bledzki, AK ;
Gassan, J .
PROGRESS IN POLYMER SCIENCE, 1999, 24 (02) :221-274
[7]   Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites [J].
Colom, X ;
Carrasco, F ;
Pagès, P ;
Cañavate, J .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (02) :161-169
[8]   Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics [J].
Corbière-Nicollier, T ;
Gfeller-Laban, B ;
Lundquist, L ;
Leterrier, Y ;
Månson, JAE ;
Jolliet, O .
RESOURCES CONSERVATION AND RECYCLING, 2001, 33 (04) :267-287
[9]   THE ELASTICITY AND STRENGTH OF PAPER AND OTHER FIBROUS MATERIALS [J].
COX, HL .
BRITISH JOURNAL OF APPLIED PHYSICS, 1952, 3 (MAR) :72-79
[10]   Lignocellulosic flour-reinforced poly(hydroxybutyrate-co-valerate) composites [J].
Dufresne, A ;
Dupeyre, D ;
Paillet, M .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 87 (08) :1302-1315