Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries

被引:360
作者
Aravindan, Vanchiappan [1 ]
Gnanaraj, Joe [2 ]
Madhavi, Srinivasan [1 ,3 ]
Liu, Hua-Kun [4 ]
机构
[1] Nanyang Technol Univ, Energy Res Inst ERI N, Singapore 637553, Singapore
[2] Yardney Tech Prod Inc, Pawcatuck, CT 06379 USA
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[4] Univ Wollongong, Inst Superconducting & Elect Mat, ARC, Ctr Excellence Electromat Sci, Wollongong, NSW 2522, Australia
基金
新加坡国家研究基金会;
关键词
electrochemistry; conducting materials; lithium; lithium-ion batteries; COMPOSITE POLYMER ELECTROLYTES; RECHARGEABLE LI BATTERIES; POLYSILOXANE-BASED ELECTROLYTE; HIGH-TEMPERATURE OPERATION; QUATERNARY AMMONIUM-SALTS; LIBOB EC/DEC ELECTROLYTES; CARBONATE MIXED-SOLVENT; THERMAL-STABILITY; PROPYLENE CARBONATE; SURFACE-CHEMISTRY;
D O I
10.1002/chem.201101486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents an overview of the various types of lithium salts used to conduct Li+ ions in electrolyte solutions for lithium rechargeable batteries. More emphasis is paid towards lithium salts and their ionic conductivity in conventional solutions, solid-electrolyte interface (SEI) formation towards carbonaceous anodes and the effect of anions on the aluminium current collector. The physicochemical and functional parameters relevant to electrochemical properties, that is, electrochemical stabilities, are also presented. The new types of lithium salts, such as the bis(oxalato) borate (LiBOB), oxalyldifluoroborate (LiODFB) and fluoroalkylphosphate (LiFAP), are described in detail with their appropriate synthesis procedures, possible decomposition mechanism for SEI formation and prospect of using them in future generation lithium-ion batteries. Finally, the state-of-the-art of the system is given and some interesting strategies for the future developments are illustrated.
引用
收藏
页码:14326 / 14346
页数:21
相关论文
共 168 条
  • [1] CHARACTERIZATION OF ETHER ELECTROLYTES FOR RECHARGEABLE LITHIUM CELLS
    ABRAHAM, KM
    GOLDMAN, JL
    NATWIG, DL
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (11) : 2404 - 2409
  • [2] The elevated temperature performance of the LiMn2O4/C system:: failure and solutions
    Amatucci, G
    Du Pasquier, A
    Blyr, A
    Zheng, T
    Tarascon, JM
    [J]. ELECTROCHIMICA ACTA, 1999, 45 (1-2) : 255 - 271
  • [3] The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes
    Andersson, AM
    Herstedt, M
    Bishop, AG
    Edström, K
    [J]. ELECTROCHIMICA ACTA, 2002, 47 (12) : 1885 - 1898
  • [4] Surface characterization of electrodes from high power lithium-ion batteries
    Andersson, AM
    Abraham, DP
    Haasch, R
    MacLaren, S
    Liu, J
    Amine, K
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) : A1358 - A1369
  • [5] RUBBERY SOLID ELECTROLYTES WITH DOMINANT CATIONIC TRANSPORT AND HIGH AMBIENT CONDUCTIVITY
    ANGELL, CA
    LIU, C
    SANCHEZ, E
    [J]. NATURE, 1993, 362 (6416) : 137 - 139
  • [6] [Anonymous], [No title captured]
  • [7] [Anonymous], [No title captured]
  • [8] PEO-LiN(SO2CF2CF3)2 polymer electrolytes -: I.: XRD, DSC, and ionic conductivity characterization
    Appetecchi, GB
    Henderson, W
    Villano, P
    Berrettoni, M
    Passerini, S
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) : A1171 - A1178
  • [9] PEO-based electrolyte membranes based on LiBC4O8 salt
    Appetecchi, GB
    Zane, D
    Scrosati, B
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (09) : A1369 - A1374
  • [10] Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries
    Arai, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (02) : A219 - A228