microRNA172 down-regulates glossy15 to promote vegetative phase change in maize

被引:369
作者
Lauter, N [1 ]
Kampani, A [1 ]
Carlson, S [1 ]
Goebel, M [1 ]
Moose, SP [1 ]
机构
[1] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA
关键词
juvenile-to-adult transition; flowering time;
D O I
10.1073/pnas.0503927102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Shoot development in many higher plant species is characterized by phase change, where meristems and organs transition from one set of identities to another. The transition from a juvenile to adult leaf identity in maize is regulated by the APETALA2-like gene glossy15 (gl15). We demonstrate here that increasing gl15 activity in transgenic maize not only increases the number of leaves expressing juvenile traits, but also delays the onset of reproductive development, indicating that gl15 plays a primary role in the maintenance of the juvenile phase. We also show that the accumulation of a maize microRNA homologous to miR172 increases during shoot development and mediates gl15 mRNA degradation. These data indicate that vegetative phase change in maize is regulated by the opposing actions of gl15 and miR172, with gl15 maintaining the juvenile phase and miR172 promoting the transition to the adult phase by down-regulation of gl15. Our results also suggest that the balance of activities between APETALA2-like genes and miR172 may be a general mechanism for regulating vegetative phase change in higher plants.
引用
收藏
页码:9412 / 9417
页数:6
相关论文
共 30 条
[1]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[2]  
Allsopp A, 1967, Adv Morphog, V6, P127
[3]   FIELD-EVALUATION OF EUROPEAN CORN-BORER CONTROL IN PROGENY OF 173 TRANSGENIC CORN EVENTS EXPRESSING AN INSECTICIDAL PROTEIN FROM BACILLUS-THURINGIENSIS [J].
ARMSTRONG, CL ;
PARKER, GB ;
PERSHING, JC ;
BROWN, SM ;
SANDERS, PR ;
DUNCAN, DR ;
STONE, T ;
DEAN, DA ;
DEBOER, DL ;
HART, J ;
HOWE, AR ;
MORRISH, FM ;
PAJEAU, ME ;
PETERSEN, WL ;
REICH, BJ ;
RODRIGUEZ, R ;
SANTINO, CG ;
SATE, SJ ;
SCHULER, W ;
SIMS, SR ;
STEHLING, S ;
TAROCHIONE, LJ ;
FROMM, ME .
CROP SCIENCE, 1995, 35 (02) :550-557
[4]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[5]   HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis [J].
Bollman, KM ;
Aukerman, MJ ;
Park, MY ;
Hunter, C ;
Berardini, TZ ;
Poethig, RS .
DEVELOPMENT, 2003, 130 (08) :1493-1504
[6]   A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J].
Chen, XM .
SCIENCE, 2004, 303 (5666) :2022-2025
[7]   The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1 [J].
Chuck, G ;
Meeley, RB ;
Hake, S .
GENES & DEVELOPMENT, 1998, 12 (08) :1145-1154
[8]   The viviparous8 mutation delays vegetative phase change and accelerates the rate of seedling growth in maize [J].
Evans, MMS ;
Poethig, RS .
PLANT JOURNAL, 1997, 12 (04) :769-779
[9]  
EVANS MMS, 1994, DEVELOPMENT, V120, P1971
[10]   GIBBERELLINS PROMOTE VEGETATIVE PHASE-CHANGE AND REPRODUCTIVE MATURITY IN MAIZE [J].
EVANS, MMS ;
POETHIG, RS .
PLANT PHYSIOLOGY, 1995, 108 (02) :475-487