New indices for cluster validity assessment

被引:206
作者
Kim, M [1 ]
Ramakrishna, RS [1 ]
机构
[1] Gwangju Inst Sci & Technol, Dept Informat & Commun, Gwangju 500712, South Korea
关键词
unsupervised learning; cluster validity index; clustering algorithm;
D O I
10.1016/j.patrec.2005.04.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cluster validation is a technique for finding a set of clusters that best fits natural partitions (of given datasets) without the benefit of any a priori class information. A cluster validity index is used to validate the outcome. This paper presents an analysis of design principles implicitly used in defining cluster validity indices and reviews a variety of existing cluster validity indices in the light of these principles. This includes an analysis of their design and performance. Armed with a knowledge of the limitations of existing indices, we proceed to remedy the situation by proposing six new indices. The new indices are evaluated through a series of experiments. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2353 / 2363
页数:11
相关论文
共 18 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] Validity-guided (re)clustering with applications to image segmentation
    Bensaid, AM
    Hall, LO
    Bezdek, JC
    Clarke, LP
    Silbiger, ML
    Arrington, JA
    Murtagh, RF
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1996, 4 (02) : 112 - 123
  • [3] Berry MichaelJ., 1997, DATA MINING TECHNIQU
  • [4] Bezdek J., 1999, FUZZY MODELS ALGORIT
  • [5] Some new indexes of cluster validity
    Bezdek, JC
    Pal, NR
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1998, 28 (03): : 301 - 315
  • [6] Calinski T., 1974, COMMUN STAT, V3, P1, DOI [10.1080/03610927408827101, DOI 10.1080/03610927408827101]
  • [7] CLUSTER SEPARATION MEASURE
    DAVIES, DL
    BOULDIN, DW
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) : 224 - 227
  • [8] Dunn J.C., 1973, J CYBERNETICS, V3, P32, DOI DOI 10.1080/01969727308546046
  • [9] Halkidi M, 2000, LECT NOTES COMPUT<D>, V1910, P265
  • [10] Clustering validity assessment: Finding the optimal partitioning of a data set
    Halkidi, M
    Vazirgiannis, M
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 187 - 194