Partial oxidation of ethanol on supported Pt catalysts

被引:102
作者
Mattos, LV [1 ]
Noronha, FB [1 ]
机构
[1] INT, Lab Catalise, BR-20081312 Rio De Janeiro, Brazil
关键词
fuel cell; partial oxidation of ethanol; hydrogen production; Pt/Al2O3; catalyst; Pt/ZrO2; Pt/CeO2; Pt/Ce0.50Zr0.50O2;
D O I
10.1016/j.jpowsour.2004.12.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work studied the effect of the nature of the support on the performance of Pt/Al2O3, Pt/ZrO2, Pt/CeO2 and Pt/Ce0.50Zr0.50O2 catalysts on partial oxidation of ethanol. The reducibility and oxygen transfer capacity were evaluated by temperature-programmed reduction (TPR) and oxygen storage capacity (OSC) experiments. The results showed that the support plays an important role on the products distribution of the partial oxidation of ethanol. Acetic acid was the main product on Pt/Al2O3 catalyst whereas methane and acetaldehyde were the only products detected on Pt/ZrO2, Pt/CeO2 and Pt/Ce(0.50)Or(0.50)O(2) catalysts. The products distribution obtained on Pt/ZrO2, Pt/CeO2 and Pt/Ce0.50Zr0.50O2 catalysts was related to their redox. properties. The OSC experiments showed that the oxygen exchange capacity was higher on Pt/CeO2 and Pt/Ce0.50Zr0.50O2 catalysts. A high oxygen storage capacity favored the formation of acetate species, which could be decomposed to CH4 and/or oxidized to CO2 via carbonate species. On the other hand, the lower oxygen exchange capacity of Pt/ZrO2 catalyst led to a higher ethoxy species formation. These species can be dehydrogenated and desorb as acetaldehyde. Then, the higher selectivity to acetaldehyde observed on Pt/ZrO2 catalyst could be assigned to its low oxygen storage/release capacity. In the case of Pt/Al2O3 catalyst, the production of acetic acid could be related to its acidic properties, since this material did not show redox properties, as revealed by OSC analysis. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 15
页数:6
相关论文
共 34 条
[1]   The multiple roles for catalysis in the production of H2 [J].
Armor, JN .
APPLIED CATALYSIS A-GENERAL, 1999, 176 (02) :159-176
[2]   Methanol: a "smart" chemical probe molecule [J].
Badlani, M ;
Wachs, IE .
CATALYSIS LETTERS, 2001, 75 (3-4) :137-149
[3]   Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol [J].
Batista, MS ;
Santos, RKS ;
Assaf, EM ;
Assaf, JM ;
Ticianelli, EA .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :99-103
[4]  
BENTLEY J, 2002, ETHANOL FUEL CELLS C
[5]   Combustion of methane on CeO2-ZrO2 based catalysts [J].
Bozo, C ;
Guilhaume, N ;
Garbowski, E ;
Primet, M .
CATALYSIS TODAY, 2000, 59 (1-2) :33-45
[6]   Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications [J].
Breen, JP ;
Burch, R ;
Coleman, HM .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2002, 39 (01) :65-74
[7]   Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell [J].
Cavallaro, S ;
Mondello, N ;
Freni, S .
JOURNAL OF POWER SOURCES, 2001, 102 (1-2) :198-204
[8]   Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst [J].
Cavallaro, S ;
Chiodo, V ;
Vita, A ;
Freni, S .
JOURNAL OF POWER SOURCES, 2003, 123 (01) :10-16
[9]   Bio-ethanol steam reforming on Ni/Al2O3 catalyst [J].
Comas, J ;
Mariño, F ;
Laborde, M ;
Amadeo, N .
CHEMICAL ENGINEERING JOURNAL, 2004, 98 (1-2) :61-68
[10]   The effect of doping CeO2 with zirconium in the oxidation of isobutane [J].
deLeitenburg, C ;
Trovarelli, A ;
Llorca, J ;
Cavani, F ;
Bini, G .
APPLIED CATALYSIS A-GENERAL, 1996, 139 (1-2) :161-173