Learning from examples with quadratic mutual information

被引:11
作者
Xu, DX [1 ]
Principe, JC [1 ]
机构
[1] Univ Florida, Computat NeuroEngn Lab, Gainesville, FL 32611 USA
来源
NEURAL NETWORKS FOR SIGNAL PROCESSING VIII | 1998年
关键词
D O I
10.1109/NNSP.1998.710645
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper discusses a novel algorithm to train nonlinear mappers with information theoretic criteria (entropy or mutual information) directly from a training set. The method is based on a Parzen window estimator and uses Renyi's quadratic definition of entropy and a distance measure based on the Cauchy-Schwartz inequality We apply the algorithm to the difficult problem of vehicle pose estimation in synthetic aperture radar (SAR) with very good results.
引用
收藏
页码:155 / 164
页数:10
相关论文
empty
未找到相关数据