The Saccharomyces cerevisiae SOP1 and SOP2 genes, which act in cation homeostasis, can be functionally substituted by the Drosophila lethal(2)giant larvae tumor suppressor gene

被引:41
作者
Larsson, K
Böhl, F
Sjöström, I
Akhtar, N
Strand, D
Mechler, BM
Grabowski, R
Adler, L
机构
[1] Univ Gothenburg, Dept Cell & Mol Biol, SE-40530 Gothenburg, Sweden
[2] Deutsch Krebsforschungszentrum, Dept Dev Genet, D-69120 Heidelberg, Germany
关键词
D O I
10.1074/jbc.273.50.33610
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
By complementation of a salt-sensitive mutant of Saccharomyces cerevisiae, we cloned the SOP1 gene, encoding a 114.5-kDa protein of 1033 amino acids. Cells deleted for SOP1 exhibited sensitivity to sodium stress, but showed no sensitivity to general osmotic stress. Following exposure of sop1 Delta cells to NaCl stress, the intracellular Na+ level and the Na+/K+ ratio rose to values significantly higher than in wild type cells. Deletion of SOP2, encoding a protein sharing 54% amino acid identity with Sop1p, produced only slight Na+ sensitivity. Cells carrying a sop1 Delta sop2 Delta double deletion became, however, hypersensitive to Na+ and exhibited increased sensitivity also to Li+ and K+, suggesting involvement of both SOP1 and SOP2 in cation homeostasis. The predicted amino acid sequences of Sop1p and Sop2p show significant homologies with the cytoskeletal-associated protein encoded by the Drosophila Lethal(2)giant larvae tumor suppressor gene. Immunolocalization of Sop1p revealed a cytoplasmic distribution and cell fractionation studies showed that a significant fraction of Sop1p was recovered in a sedimentable fraction of the cytosolic material. Expression of a Drosophila l(2)gl cDNA in the sop1 Delta sop2 Delta strain partially restored the Na+ tolerance of the cells, indicating a functional relationship between the Sop proteins and the tumor suppressor protein, and a novel function in cell homeostasis for this family of proteins extending from yeast to human.
引用
收藏
页码:33610 / 33618
页数:9
相关论文
共 59 条
[1]   PRECISE GENE DISRUPTION IN SACCHAROMYCES-CEREVISIAE BY DOUBLE FUSION POLYMERASE CHAIN-REACTION [J].
AMBERG, DC ;
BOTSTEIN, D ;
BEASLEY, EM .
YEAST, 1995, 11 (13) :1275-1280
[2]  
[Anonymous], [No title captured]
[3]  
Ausubel FA, 1995, CURRENT PROTOCOLS MO
[4]   CLONING AND DISRUPTION OF CKB1, THE GENE ENCODING THE 38-KDA BETA-SUBUNIT OF SACCHAROMYCES-CEREVISIAE CASEIN KINASE-II (CKII) - DELETION OF CKII REGULATORY SUBUNITS ELICITS A SALT-SENSITIVE PHENOTYPE [J].
BIDWAI, AP ;
REED, JC ;
GLOVER, CVC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (18) :10395-10404
[5]   CALCINEURIN-DEPENDENT GROWTH-CONTROL IN SACCHAROMYCES-CEREVISIAE MUTANTS LACKING PMC1, A HOMOLOG OF PLASMA-MEMBRANE CA2+ ATPASES [J].
CUNNINGHAM, KW ;
FINK, GR .
JOURNAL OF CELL BIOLOGY, 1994, 124 (03) :351-363
[6]   ISOLATION OF THE YEAST CALMODULIN GENE - CALMODULIN IS AN ESSENTIAL PROTEIN [J].
DAVIS, TN ;
URDEA, MS ;
MASIARZ, FR ;
THORNER, J .
CELL, 1986, 47 (03) :423-431
[7]   Origins of cell polarity [J].
Drubin, DG ;
Nelson, WJ .
CELL, 1996, 84 (03) :335-344
[8]   CLONING AND CHARACTERIZATION OF GPD2, A 2ND GENE ENCODING SN-GLYCEROL 3-PHOSPHATE DEHYDROGENASE (NAD(+)) IN SACCHAROMYCES-CEREVISIAE, AND ITS COMPARISON WITH GPD1 [J].
ERIKSSON, P ;
ANDRE, L ;
ANSELL, R ;
BLOMBERG, A ;
ADLER, L .
MOLECULAR MICROBIOLOGY, 1995, 17 (01) :95-107
[9]  
FERRANDO A, 1995, MOL CELL BIOL, V15, P5470
[10]   TRK1 ENCODES A PLASMA-MEMBRANE PROTEIN REQUIRED FOR HIGH-AFFINITY POTASSIUM-TRANSPORT IN SACCHAROMYCES-CEREVISIAE [J].
GABER, RF ;
STYLES, CA ;
FINK, GR .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (07) :2848-2859