Sequence Coevolution between RNA and Protein Characterized by Mutual Information between Residue Triplets

被引:13
作者
Brandman, Relly [1 ]
Brandman, Yigal [1 ]
Pande, Vijay S. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
来源
PLOS ONE | 2012年 / 7卷 / 01期
关键词
HIGH-RESOLUTION STRUCTURES; RIBOSOME; ACID; EVOLUTION;
D O I
10.1371/journal.pone.0030022
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coevolving residues in a multiple sequence alignment provide evolutionary clues of biophysical interactions in 3D structure. Despite a rich literature describing amino acid coevolution within or between proteins and nucleic acid coevolution within RNA, to date there has been no direct evidence of coevolution between protein and RNA. The ribosome, a structurally conserved macromolecular machine composed of over 50 interacting protein and RNA chains, provides a natural example of RNA/protein interactions that likely coevolved. We provide the first direct evidence of RNA/protein coevolution by characterizing the mutual information in residue triplets from a multiple sequence alignment of ribosomal protein L22 and neighboring 23S RNA. We define residue triplets as three positions in the multiple sequence alignment, where one position is from the 23S RNA and two positions are from the L22 protein. We show that residue triplets with high mutual information are more likely than residue doublets to be proximal in 3D space. Some high mutual information residue triplets cluster in a connected series across the L22 protein structure, similar to patterns seen in protein coevolution. We also describe RNA nucleotides for which switching from one nucleotide to another (or between purines and pyrimidines) results in a change in amino acid distribution for proximal amino acid positions. Multiple crystal structures for evolutionarily distinct ribosome species can provide structural evidence for these differences. For one residue triplet, a pyrimidine in one species is a purine in another, and RNA/protein hydrogen bonds are present in one species but not the other. The results provide the first direct evidence of RNA/protein coevolution by using higher order mutual information, suggesting that biophysical constraints on interacting RNA and protein chains are indeed a driving force in their evolution.
引用
收藏
页数:7
相关论文
共 23 条
[1]   Correlating ribosome function with high-resolution structures [J].
Bashan, Anat ;
Yonath, Ada .
TRENDS IN MICROBIOLOGY, 2008, 16 (07) :326-335
[2]   Structural insight into the role of the ribosomal tunnel in cellular regulation [J].
Berisio, R ;
Schluenzen, F ;
Harms, J ;
Bashan, A ;
Auerbach, T ;
Baram, D ;
Yonath, A .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (05) :366-370
[3]   The Comparative RNA Web (CRW) Site:: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs -: art. no. 2 [J].
Cannone, JJ ;
Subramanian, S ;
Schnare, MN ;
Collett, JR ;
D'Souza, LM ;
Du, YS ;
Feng, B ;
Lin, N ;
Madabusi, LV ;
Müller, KM ;
Pande, N ;
Shang, ZD ;
Yu, N ;
Gutell, RR .
BMC BIOINFORMATICS, 2002, 3 (1)
[4]   Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains [J].
Cheng, AC ;
Chen, WW ;
Fuhrmann, CN ;
Frankel, AD .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 327 (04) :781-796
[5]  
CHIU DKY, 1991, COMPUT APPL BIOSCI, V7, P347
[6]  
Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed
[7]   Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction [J].
Dunn, S. D. ;
Wahl, L. M. ;
Gloor, G. B. .
BIOINFORMATICS, 2008, 24 (03) :333-340
[8]   A novel method for detecting intramolecular coevolution: Adding a further dimension to selective constraints analyses [J].
Fares, Mario A. ;
Travers, Simon A. A. .
GENETICS, 2006, 173 (01) :9-23
[9]   AN IMPROVED METHOD FOR DETERMINING CODON VARIABILITY IN A GENE AND ITS APPLICATION TO RATE OF FIXATION OF MUTATIONS IN EVOLUTION [J].
FITCH, WM ;
MARKOWITZ, E .
BIOCHEMICAL GENETICS, 1970, 4 (05) :579-+
[10]   Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions [J].
Gloor, GB ;
Martin, LC ;
Wahl, LM ;
Dunn, SD .
BIOCHEMISTRY, 2005, 44 (19) :7156-7165