A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell

被引:213
作者
So, AKC
Espie, GS
Williams, EB
Shively, JM
Heinhorst, S
Cannon, GC
机构
[1] Univ Toronto, Dept Bot, Mississauga, ON L5L 1C6, Canada
[2] Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA
[3] Clemson Univ, Dept Biochem & Genet, Clemson, SC 29634 USA
关键词
D O I
10.1128/JB.186.3.623-630.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A significant portion of the total carbon fixed in the biosphere is attributed to the autotrophic metabolism of prokaryotes. In cyanobacteria and many chemolithoautotrophic bacteria, CO2 fixation is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), most if not all of which is packaged in protein microcompartments called carboxysomes. These structures play an integral role in a cellular CO2-concentrating mechanism and are essential components for autotrophic growth. Here we report that the carboxysomal shell protein, CsoS3, from Halothiobacillus neapolitanus is a novel carbonic anhydrase (epsilon-class CA) that has an evolutionary lineage distinct from those previously recognized in animals, plants, and other prokaryotes. Functional CAs encoded by csoS3 homologues were also identified in the cyanobacteria Prochlorococcus sp. and Synechococcus sp., which dominate the oligotrophic oceans and are major contributors to primary productivity. The location of the carboxysomal CA in the shell suggests that it could supply the active sites of RuBisCO in the carboxysome with the high concentrations of CO2 necessary for optimal RuBisCO activity and efficient carbon fixation in these prokaryotes, which are important contributors to the global carbon cycle.
引用
收藏
页码:623 / 630
页数:8
相关论文
共 39 条
[1]   Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria [J].
Badger, MR ;
Hanson, D ;
Price, GD .
FUNCTIONAL PLANT BIOLOGY, 2002, 29 (2-3) :161-173
[2]   Insertion mutation of the form I cbbL gene encoding ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in Thiobacillus neapolitanus results in expression of form II RuBisCO, loss of carboxysomes, and an increased CO2 requirement for growth [J].
Baker, SH ;
Jin, SM ;
Aldrich, HC ;
Howard, GT ;
Shively, JM .
JOURNAL OF BACTERIOLOGY, 1998, 180 (16) :4133-4139
[3]   Identification and localization of the carboxysome peptide Csos3 and its corresponding gene in Thiobacillus neapolitanus [J].
Baker, SH ;
Williams, DS ;
Aldrich, HC ;
Gambrell, AC ;
Shively, JM .
ARCHIVES OF MICROBIOLOGY, 2000, 173 (04) :278-283
[4]   The correlation of the gene csoS2 of the carboxysome operon with two polypeptides of the carboxysome in Thiobacillus neapolitanus [J].
Baker, SH ;
Lorbach, SC ;
Rodriguez-Buey, M ;
Williams, DS ;
Aldrich, HC ;
Shively, JM .
ARCHIVES OF MICROBIOLOGY, 1999, 172 (04) :233-239
[5]   RELATIONS BETWEEN D-RIBULOSE-1,5-BIS-PHOSPHATE CARBOXYLASE, CARBOXYSOMES AND CO2 FIXING CAPACITY IN THE OBLIGATE CHEMOLITHOTROPH THIOBACILLUS-NEAPOLITANUS GROWN UNDER DIFFERENT LIMITATIONS IN THE CHEMOSTAT [J].
BEUDEKER, RF ;
CANNON, GC ;
KUENEN, JG ;
SHIVELY, JM .
ARCHIVES OF MICROBIOLOGY, 1980, 124 (2-3) :185-189
[6]   CHARACTERIZATION OF A HOMOGENOUS PREPARATION OF CARBOXYSOMES FROM THIOBACILLUS-NEAPOLITANUS [J].
CANNON, GC ;
SHIVELY, JM .
ARCHIVES OF MICROBIOLOGY, 1983, 134 (01) :52-59
[7]   Organization of carboxysome genes in the thiobacilli [J].
Cannon, GC ;
Baker, SH ;
Soyer, F ;
Johnson, DR ;
Bradburne, CE ;
Mehlman, JL ;
Davies, PS ;
Jiang, QL ;
Heinhorst, S ;
Shively, JM .
CURRENT MICROBIOLOGY, 2003, 46 (02) :115-119
[8]   Carboxysome genomics: a status report [J].
Cannon, GC ;
Heinhorst, S ;
Bradburne, CE ;
Shively, JM .
FUNCTIONAL PLANT BIOLOGY, 2002, 29 (2-3) :175-182
[9]   Microcompartments in prokaryotes: Carboxysomes and related polyhedra [J].
Cannon, GC ;
Bradburne, CE ;
Aldrich, HC ;
Baker, SH ;
Heinhorst, S ;
Shively, JM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (12) :5351-5361
[10]   Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome [J].
Dufresne, A ;
Salanoubat, M ;
Partensky, F ;
Artiguenave, F ;
Axmann, IM ;
Barbe, V ;
Duprat, S ;
Galperin, MY ;
Koonin, EV ;
Le Gall, F ;
Makarova, KS ;
Ostrowski, M ;
Oztas, S ;
Robert, C ;
Rogozin, IB ;
Scanlan, DJ ;
de Marsac, NT ;
Weissenbach, J ;
Wincker, P ;
Wolf, YI ;
Hess, WR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (17) :10020-10025