Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis

被引:81
作者
Lopez-Martin, M. Carmen [1 ,2 ]
Becana, Manuel [3 ]
Romero, Luis C. [1 ,2 ]
Gotor, Cecilia [1 ,2 ]
机构
[1] CSIC, Inst Bioquim Vegetal & Fotosintesis, Seville 41092, Spain
[2] Univ Seville, Seville 41092, Spain
[3] CSIC, Estac Expt Aula Dei, Dept Nutr Vegetal, E-50080 Zaragoza, Spain
关键词
D O I
10.1104/pp.108.117408
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant cells contain different O-acetylserine(thiol) lyase (OASTL) enzymes involved in cysteine (Cys) biosynthesis and located in different subcellular compartments. These enzymes are made up of a complex variety of isoforms resulting in different subcellular Cys pools. To unravel the contribution of cytosolic Cys to plant metabolism, we characterized the knockout oas-a1.1 and osa-a1.2 mutants, deficient in the most abundant cytosolic OASTL isoform in Arabidopsis (Arabidopsis thaliana). Total intracellular Cys and glutathione concentrations were reduced, and the glutathione redox state was shifted in favor of its oxidized form. Interestingly, the capability of the mutants to chelate heavy metals did not differ from that of the wild type, but the mutants have an enhanced sensitivity to cadmium. With the aim of establishing the metabolic network most influenced by the cytosolic Cys pool, we used the ATH1 GeneChip for evaluation of differentially expressed genes in the oas-a1.1 mutant grown under nonstress conditions. The transcriptomic footprints of mutant plants had predicted functions associated with various physiological responses that are dependent on reactive oxygen species and suggested that the mutant was oxidatively stressed. Evidences that the mutation caused a perturbation in H2O2 homeostasis are that, in the knockout, H2O2 production was localized in shoots and roots; spontaneous cell death lesions occurred in the leaves; and lignification and guaiacol peroxidase activity were significantly increased. All these findings indicate that a deficiency of OAS-A1 in the cytosol promotes a perturbation in H2O2 homeostasis and that Cys is an important determinant of the antioxidative capacity of the cytosol in Arabidopsis.
引用
收藏
页码:562 / 572
页数:11
相关论文
共 37 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   Evidence for a direct link between glutathione biosynthesis and stress fefense gene expression in Arabidopsis [J].
Ball, L ;
Accotto, GP ;
Bechtold, U ;
Creissen, G ;
Funck, D ;
Jimenez, A ;
Kular, B ;
Leyland, N ;
Mejia-Carranza, J ;
Reynolds, H ;
Karpinski, S ;
Mullineaux, PM .
PLANT CELL, 2004, 16 (09) :2448-2462
[3]   Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid [J].
Barroso, C ;
Romero, LC ;
Cejudo, FJ ;
Vega, JM ;
Gotor, C .
PLANT MOLECULAR BIOLOGY, 1999, 40 (04) :729-736
[4]   A NEW MEMBER OF THE CYTOSOLIC O-ACETYLSERINE(THIOL)LYASE GENE FAMILY IN ARABIDOPSIS-THALIANA [J].
BARROSO, C ;
VEGA, JM ;
GOTOR, C .
FEBS LETTERS, 1995, 363 (1-2) :1-5
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   Redox regulation: A broadening horizon [J].
Buchanan, BB ;
Balmer, Y .
ANNUAL REVIEW OF PLANT BIOLOGY, 2005, 56 :187-220
[8]   Evolution and function of phytochelatin synthases [J].
Clemens, S .
JOURNAL OF PLANT PHYSIOLOGY, 2006, 163 (03) :319-332
[9]   Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco [J].
Dat, JF ;
Pellinen, R ;
Beeckman, T ;
Van de Cotte, B ;
Langebartels, C ;
Kangasjärvi, J ;
Inzé, D ;
Van Breusegem, F .
PLANT JOURNAL, 2003, 33 (04) :621-632
[10]   Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis [J].
Davletova, S ;
Rizhsky, L ;
Liang, HJ ;
Zhong, SQ ;
Oliver, DJ ;
Coutu, J ;
Shulaev, V ;
Schlauch, K ;
Mittler, R .
PLANT CELL, 2005, 17 (01) :268-281