Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes

被引:1057
作者
Ramirez, Kelly S. [1 ]
Craine, Joseph M. [2 ]
Fierer, Noah [1 ,3 ]
机构
[1] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA
[2] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
anthropogenic change; bacteria; extracellular enzymes; microbial activity; pyrosequencing; soil decomposition; temperature sensitivity; ORGANIC-MATTER; BACTERIAL COMMUNITIES; ENZYME-ACTIVITIES; CARBON; DEPOSITION; DIVERSITY; FERTILIZATION; RESPIRATION; ULTRAMICROBACTERIA; MICROORGANISMS;
D O I
10.1111/j.1365-2486.2012.02639.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) via anthropogenic activities with the added N having potentially important impacts on microbially mediated belowground carbon dynamics. However, a comprehensive understanding of how elevated N availability affects soil microbial processes and community dynamics remains incomplete. The mechanisms responsible for the observed responses are poorly resolved and we do not know if soil microbial communities respond in a similar manner across ecosystems. We collected 28 soils from a broad range of ecosystems in North America, amended soils with inorganic N, and incubated the soils under controlled conditions for 1year. Consistent across nearly all soils, N addition decreased microbial respiration rates, with an average decrease of 11% over the year-long incubation, and decreased microbial biomass by 35%. High-throughput pyrosequencing showed that N addition consistently altered bacterial community composition, increasing the relative abundance of Actinobacteria and Firmicutes, and decreasing the relative abundance of Acidobacteria and Verrucomicrobia. Further, N-amended soils consistently had lower activities in a broad suite of extracellular enzymes and had decreased temperature sensitivity, suggesting a shift to the preferential decomposition of more labile C pools. The observed trends held across strong gradients in climate and soil characteristics, indicating that the soil microbial responses to N addition are likely controlled by similar wide-spread mechanisms. Our results support the hypothesis that N addition depresses soil microbial activity by shifting the metabolic capabilities of soil bacterial communities, yielding communities that are less capable of decomposing more recalcitrant soil carbon pools and leading to a potential increase in soil carbon sequestration rates.
引用
收藏
页码:1918 / 1927
页数:10
相关论文
共 65 条
[1]   Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited [J].
Aber, J ;
McDowell, W ;
Nadelhoffer, K ;
Magill, A ;
Berntson, G ;
Kamakea, M ;
McNulty, S ;
Currie, W ;
Rustad, L ;
Fernandez, I .
BIOSCIENCE, 1998, 48 (11) :921-934
[2]   NITROGEN SATURATION OF TERRESTRIAL ECOSYSTEMS [J].
AGREN, GI ;
BOSATTA, E .
ENVIRONMENTAL POLLUTION, 1988, 54 (3-4) :185-197
[3]   Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest [J].
Allison, Steven D. ;
Czimczik, Claudia I. ;
Treseder, Kathleen K. .
GLOBAL CHANGE BIOLOGY, 2008, 14 (05) :1156-1168
[4]   Examining the global distribution of dominant archaeal populations in soil [J].
Bates, Scott T. ;
Berg-Lyons, Donna ;
Caporaso, J. Gregory ;
Walters, William A. ;
Knight, Rob ;
Fierer, Noah .
ISME JOURNAL, 2011, 5 (05) :908-917
[5]   The under-recognized dominance of Verrucomicrobia in soil bacterial communities [J].
Bergmann, Gaddy T. ;
Bates, Scott T. ;
Eilers, Kathryn G. ;
Lauber, Christian L. ;
Caporaso, J. Gregory ;
Walters, William A. ;
Knight, Rob ;
Fierer, Noah .
SOIL BIOLOGY & BIOCHEMISTRY, 2011, 43 (07) :1450-1455
[6]   The effect of nutrient deposition on bacterial communities in Arctic tundra soil [J].
Campbell, Barbara J. ;
Polson, Shawn W. ;
Hanson, Thomas E. ;
Mack, Michelle C. ;
Schuur, Edward A. G. .
ENVIRONMENTAL MICROBIOLOGY, 2010, 12 (07) :1842-1854
[7]   The Evolution and Future of Earth's Nitrogen Cycle [J].
Canfield, Donald E. ;
Glazer, Alexander N. ;
Falkowski, Paul G. .
SCIENCE, 2010, 330 (6001) :192-196
[8]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[9]   Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition [J].
Cleveland, Cory C. ;
Nemergut, Diana R. ;
Schmidt, Steven K. ;
Townsend, Alan R. .
BIOGEOCHEMISTRY, 2007, 82 (03) :229-240
[10]   Sensitivity of organic matter decomposition to warming varies with its quality [J].
Conant, Richard T. ;
Drijber, Rhae A. ;
Haddix, Michelle L. ;
Parton, William J. ;
Paul, Eldor A. ;
Plante, Alain F. ;
Six, Johan ;
Steinweg, J. Megan .
GLOBAL CHANGE BIOLOGY, 2008, 14 (04) :868-877