In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate

被引:82
作者
Kim, H
Suh, H
Jo, SA
Kim, HW
Lee, JM
Kim, EH
Reinwald, Y
Park, SH
Min, BH
Jo, I
机构
[1] NIH, Dept Biomed Sci, Seoul 122701, South Korea
[2] Yonsei Univ, Coll Med, Dept Med Engn, Seoul 120752, South Korea
[3] Yonsei Univ, Coll Med, Dept Orthopaed Surg, Seoul 120752, South Korea
[4] Ajou Univ, Dept Biomed Engn, Suwon 442749, South Korea
[5] Ajou Univ, Sch Med, Dept Orthoped Surg, Suwon 442749, South Korea
关键词
marrow stromal cells; scaffolds; poly(D; L-lactide-co-glycolide); dexamethasone; ascorbate-2-phosphate; osteogenesis; bone; differentiation; alkaline phosphatase; tissue engineering;
D O I
10.1016/j.bbrc.2005.05.051
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An unsolved problem with stem cell-based engineering of bone tissue is how to provide a microenvironment that promotes the osteogenic differentiation of multipotent stem cells. Previously, we fabricated porous poly(D,L-lactide-co-glycolide) (PLGA) scaffolds that released biologically active dexamethasone (Dex) and ascorbate-2-phosphate (AsP), and that acted as osteogenic scaffolds. To determine whether these osteogenic scaffolds can be used for bone formation in vivo, we seeded multipotent human marrow stromal cells (hMSCs) onto the scaffolds and implanted them subcutaneously into athymic mice. Higher alkaline phosphatase expression was observed in hMSCs in the osteogenic scaffolds compared with that of hMSCs in control scaffolds, Furthermore, there was more calcium deposition and stronger von Kossa staining in the osteogenic scaffolds, which suggested that there was enhanced mineralized bone formation. We failed to detect cartilage in the osteogenic scaffolds (negative Safranin 0 staining), which implied that there was intramembranous ossification. This is the first study to demonstrate the successful formation of mineralized bone tissue in vivo by hMSCs in PLGA scaffolds that release Dex and AsP. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1053 / 1060
页数:8
相关论文
共 48 条
[1]   Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo [J].
Al-Khaldi, A ;
Eliopoulos, N ;
Martineau, D ;
Lejeune, L ;
Lachapelle, K ;
Galipeau, J .
GENE THERAPY, 2003, 10 (08) :621-629
[2]   Signal transduction by the TGF-β superfamily [J].
Attisano, L ;
Wrana, JL .
SCIENCE, 2002, 296 (5573) :1646-1647
[3]   Effects of transforming growth factor β1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells [J].
Awad, HA ;
Halvorsen, YDC ;
Gimble, JM ;
Guilak, F .
TISSUE ENGINEERING, 2003, 9 (06) :1301-1312
[4]  
Bauer TW, 2000, CLIN ORTHOP RELAT R, P10
[5]   Monoclonal antibodies reactive with human osteogenic cell surface antigens [J].
Bruder, SP ;
Horowitz, MC ;
Mosca, JD ;
Haynesworth, SE .
BONE, 1997, 21 (03) :225-235
[6]   Mesenchymal stem cells: building blocks for molecular medicine in the 21st century [J].
Caplan, AI ;
Bruder, SP .
TRENDS IN MOLECULAR MEDICINE, 2001, 7 (06) :259-264
[7]  
Chen ZF, 2002, DEV FULL SC, V4, P121
[8]   DIFFERENTIATION OF HUMAN BONE-MARROW OSTEOGENIC STROMAL CELLS IN VITRO - INDUCTION OF THE OSTEOBLAST PHENOTYPE BY DEXAMETHASONE [J].
CHENG, SL ;
YANG, JW ;
RIFAS, L ;
ZHANG, SF ;
AVIOLI, LV .
ENDOCRINOLOGY, 1994, 134 (01) :277-286
[9]   Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone -: Evidence for involvement of peroxisome proliferator-activated receptor (PPAR)γ-dependent and PPARγ-independent signaling pathways [J].
Cho, DH ;
Choi, YJ ;
Jo, SA ;
Jo, I .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (04) :2499-2506
[10]   Adipose-derived adult stromal cells heal critical-size mouse calvarial defects [J].
Cowan, CM ;
Shi, YY ;
Aalami, OO ;
Chou, YF ;
Mari, C ;
Thomas, R ;
Quarto, N ;
Contag, CH ;
Wu, B ;
Longaker, MT .
NATURE BIOTECHNOLOGY, 2004, 22 (05) :560-567