Linking RNA Polymerase Backtracking to Genome Instability in E. coli

被引:264
作者
Dutta, Dipak [1 ]
Shatalin, Konstantin [1 ]
Epshtein, Vitaly [1 ]
Gottesman, Max E. [2 ,3 ]
Nudler, Evgeny [1 ]
机构
[1] NYU, Sch Med, Dept Biochem, New York, NY 10016 USA
[2] Columbia Univ, Med Ctr, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[3] Columbia Univ, Med Ctr, Dept Microbiol, New York, NY 10032 USA
关键词
REPLICATION FORK PROGRESSION; TERMINATION FACTOR-RHO; COUPLING FACTOR MFD; UNITS IN-VIVO; ESCHERICHIA-COLI; DNA-REPLICATION; TRANSCRIPTION TERMINATION; ELONGATION-FACTORS; BACILLUS-SUBTILIS; REPAIR;
D O I
10.1016/j.cell.2011.07.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Frequent codirectional collisions between the replisome and RNA polymerase (RNAP) are inevitable because the rate of replication is much faster than that of transcription. Here we show that, in E. coli, the outcome of such collisions depends on the productive state of transcription elongation complexes (ECs). Codirectional collisions with backtracked (arrested) ECs lead to DNA double-strand breaks (DSBs), whereas head-on collisions do not. A mechanistic model is proposed to explain backtracking-mediated DSBs. We further show that bacteria employ various strategies to avoid replisome collisions with backtracked RNAP, the most general of which is translation that prevents RNAP backtracking. If translation is abrogated, DSBs are suppressed by elongation factors that either prevent backtracking or reactivate backtracked ECs. Finally, termination factors also contribute to genomic stability by removing arrested ECs. Our results establish RNAP backtracking as the intrinsic hazard to chromosomal integrity and implicate active ribosomes and other anti-backtracking mechanisms in genome maintenance.
引用
收藏
页码:533 / 543
页数:11
相关论文
共 57 条
[1]   A comparative study of mutations in Escherichia coli and Salmonella typhimurium shows that codon conservation is strongly correlated with codon usage [J].
Alff-Steinberger, C .
JOURNAL OF THEORETICAL BIOLOGY, 2000, 206 (02) :307-311
[2]   The S-cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes [J].
Azvolinsky, Anna ;
Dunaway, Stephen ;
Torres, Jorge Z. ;
Bessler, Jessica B. ;
Zakian, Virginia A. .
GENES & DEVELOPMENT, 2006, 20 (22) :3104-3116
[3]  
Birren B., 1993, Pulse field gel electrophoresis--a practical guide
[4]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[5]   Bacterial transcription elongation factors: new insights into molecular mechanism of action [J].
Borukhov, S ;
Lee, J ;
Laptenko, O .
MOLECULAR MICROBIOLOGY, 2005, 55 (05) :1315-1324
[6]   The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo [J].
Boubakri, Hasna ;
de Septenville, Anne Langlois ;
Viguera, Enrique ;
Michel, Benedicte .
EMBO JOURNAL, 2010, 29 (01) :145-157
[8]   Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E-coli [J].
Cardinale, Christopher J. ;
Washburn, Robert S. ;
Tadigotla, Vasisht R. ;
Brown, Lewis M. ;
Gottesman, Max E. ;
Nudler, Evgeny .
SCIENCE, 2008, 320 (5878) :935-938
[9]   Structural basis of RNA polymerase II backtracking, arrest and reactivation [J].
Cheung, Alan C. M. ;
Cramer, Patrick .
NATURE, 2011, 471 (7337) :249-253
[10]   CONTROL OF RIBOSOMAL-RNA TRANSCRIPTION IN ESCHERICHIA-COLI [J].
CONDON, C ;
SQUIRES, C ;
SQUIRES, CL .
MICROBIOLOGICAL REVIEWS, 1995, 59 (04) :623-&