Epidermal Growth Factor-receptor (Egfr) signaling is evolutionarily conserved and controls a variety of different cellular processes. In Drosophila these include proliferation, patterning, cell-fate determination, migration and survival. Here we provide evidence for a new role of Egfr signaling in controlling ommatidial rotation during planar cell polarity (PCP) establishment in the Drosophila eye. Although the signaling pathways involved in PCP establishment and photoreceptor cell-type specification are beginning to be unraveled, very little is known about the associated 90degrees rotation process. One of the few rotation-specific mutations known is roulette (rlt) in which ommatidia rotate to a random degree, often more than 90degrees. Here we show that rlt is a rotation-specific allele of the inhibitory Egfr ligand Argos and that modulation of Egfr activity shows defects in ommatidial rotation. Our data indicate that, beside the Raf/MAPK cascade, the Ras effector Canoe/AF6 acts downstream of Egfr/Ras and provides a link from Egfr to cytoskeletal elements in this developmentally regulated cell motility process. We provide further evidence for an involvement of cadherins and nonmuscle myosin II as downstream components controlling rotation. In particular, the involvement of the cadherin Flamingo, a PCP gene, downstream of Egfr signaling provides the first link between PCP establishment and the Egfr pathway.