Resistance proteins: scouts of the plant innate immune system

被引:42
作者
Tameling, Wladimir I. L. [2 ]
Takken, Frank L. W. [1 ]
机构
[1] Univ Amsterdam, Swammerdam Inst Life Sci, NL-1090 Amsterdam, Netherlands
[2] Univ Wageningen & Res Ctr, Phytopathol Lab, NL-6709 PD Wageningen, Netherlands
关键词
disease resistance; effector; NB-LRR proteins; nucleotide binding; nucleus; PAMP;
D O I
10.1007/s10658-007-9187-8
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Recognition of non-self in plants is mediated by specialised receptors that upon pathogen perception trigger induction of host defence responses. Primary, or basal, defence is mainly triggered by trans-membrane receptors that recognise conserved molecules released by a variety of (unrelated) microbes. Pathogens can overcome these basal defences by the secretion of specific effectors. Subsequent recognition of these effectors by specialised receptors (called resistance proteins) triggers induction of a second layer of plant defence responses. These responses are qualitatively similar to primary defence responses; however, they are generally faster and stronger. Here we give an overview of the predicted (domain) structures of resistance proteins and their proposed mode of action as molecular switches of plant innate immunity. We also highlight recent advances revealing that some of these proteins act in the plant nucleus as transcriptional co-regulators and that crosstalk can occur between members of different resistance protein families.
引用
收藏
页码:243 / 255
页数:13
相关论文
共 88 条
[1]   Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease [J].
Ade, Jules ;
DeYoung, Brody J. ;
Golstein, Catherine ;
Innes, Roger W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2531-2536
[2]   Update on the domain architectures of NLRs and R proteins [J].
Albrecht, M ;
Takken, FLW .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 339 (02) :459-462
[3]   The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases [J].
Aravind, L .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (09) :421-423
[4]   Are innate immune signaling pathways in plants and animals conserved? [J].
Ausubel, FM .
NATURE IMMUNOLOGY, 2005, 6 (10) :973-979
[5]   Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease [J].
Axtell, MJ ;
Chisholm, ST ;
Dahlbeck, D ;
Staskawicz, BJ .
MOLECULAR MICROBIOLOGY, 2003, 49 (06) :1537-1546
[6]   Role of SGT1 in resistance protein accumulation in plant immunity [J].
Azevedo, Cristina ;
Betsuyaku, Shigeyuki ;
Peart, Jack ;
Takahashi, Akira ;
Noel, Laurent ;
Sadanandom, Ari ;
Casais, Catarina ;
Parker, Jane ;
Shirasu, Ken .
EMBO JOURNAL, 2006, 25 (09) :2007-2016
[7]   Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1 [J].
Bao, Qing ;
Lu, Wenyun ;
Rabinowitz, Joshua D. ;
Shi, Yigong .
MOLECULAR CELL, 2007, 25 (02) :181-192
[8]   Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato [J].
Bendahmane, A ;
Farnham, G ;
Moffett, P ;
Baulcombe, DC .
PLANT JOURNAL, 2002, 32 (02) :195-204
[9]   RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance [J].
Bieri, S ;
Mauch, S ;
Shen, QH ;
Peart, J ;
Devoto, A ;
Casais, C ;
Ceron, F ;
Schulze, S ;
Steinbiss, HH ;
Shirasu, K ;
Schulze-Lefert, P .
PLANT CELL, 2004, 16 (12) :3480-3495
[10]   Trafficking arms: oomycete effectors enter host plant cells [J].
Birch, PRJ ;
Rehmany, AP ;
Pritchard, L ;
Kamoun, S ;
Beynon, JL .
TRENDS IN MICROBIOLOGY, 2006, 14 (01) :8-11