Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2

被引:25
作者
Urboniene, V.
Vrublevskaja, O.
Trinkunas, G.
Gall, A.
Robert, B.
Valkunas, L. [1 ]
机构
[1] Lithuania Acad Sci, Inst Phys, LT-232600 Vilnius, Lithuania
[2] Vilnius State Univ, Dept Gen Phys & Spect, Vilnius, Lithuania
[3] CEA Saclay, Serv Biophys Fonct Membranaires, Dept Biol Joliot Curie Commissariat Energie Atom, F-91191 Gif Sur Yvette, France
[4] CEA Saclay, CNRS, URA2096, F-91191 Gif Sur Yvette, France
[5] Vilnius State Univ, Dept Theoret Phys, Vilnius, Lithuania
关键词
D O I
10.1529/biophysj.106.103093
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll ( Bchl) molecules of the peripheral light-harvesting ( or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments ( detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires spectrum.
引用
收藏
页码:2188 / 2198
页数:11
相关论文
共 48 条
[1]   Calculations of spectroscopic properties of the LH2 bacteriochlorophyll - Protein antenna complex from Rhodopseudomonas acidophila [J].
Alden, RG ;
Johnson, E ;
Nagarajan, V ;
Parson, WW ;
Law, CJ ;
Cogdell, RG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (23) :4667-4680
[2]   Exciton delocalization and initial dephasing dynamics of purple bacterial LH2 [J].
Book, LD ;
Ostafin, AE ;
Ponomarenko, N ;
Norris, JR ;
Scherer, NF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (34) :8295-8307
[3]  
Bose S. K., 1963, BACTERIAL PHOTOSYNTH
[4]   Identification of intramembrane hydrogen bonding between 131 keto group of bacteriochlorophyll and serine residue α27 in the LH2 light-harvesting complex [J].
Braun, P ;
Végh, AP ;
von Jan, A ;
Strohmann, B ;
Hunter, CN ;
Robert, B ;
Scheer, H .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2003, 1607 (01) :19-26
[5]   Spectral hole burning and fluorescence line narrowing in subunits of the light-harvesting complex LH1 of purple bacteria [J].
Creemers, TMH ;
De Caro, CA ;
Visschers, RW ;
van Grondelle, R ;
Völker, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (44) :9770-9776
[6]   Excitons in a photosynthetic light-harvesting system:: A combined molecular dynamics, quantum chemistry, and polaron model study -: art. no. 031919 [J].
Damjanovic, A ;
Kosztin, I ;
Kleinekathöfer, U ;
Schulten, K .
PHYSICAL REVIEW E, 2002, 65 (03) :1-031919
[7]  
Davydov A.S., 1971, THEORY MOL EXCITONS
[8]   Femtosecond spectroscopy of photosynthetic light-harvesting systems [J].
Fleming, GR ;
vanGrondelle, R .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (05) :738-748
[9]   Self-trapped excitons in LH2 antenna complexes between 5 K and ambient temperature [J].
Freiberg, A ;
Rätsep, M ;
Timpmann, K ;
Trinkunas, G ;
Woodbury, NW .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (41) :11510-11519
[10]   Self-trapped excitons in circular cacteriochlorophyll antenna complexes [J].
Freiberg, A ;
Rätsep, M ;
Timpmann, K ;
Trinkunas, G .
JOURNAL OF LUMINESCENCE, 2003, 102 :363-368