Avoiding paradoxes in multi-agent competitive routing

被引:11
作者
Altman, E [1 ]
El Azouzi, R [1 ]
Pourtallier, O [1 ]
机构
[1] INRIA, Projet MISTRAL, F-06902 Sophia Antipolis, France
来源
COMPUTER NETWORKS-THE INTERNATIONAL JOURNAL OF COMPUTER AND TELECOMMUNICATIONS NETWORKING | 2003年 / 43卷 / 02期
关键词
D O I
10.1016/S1389-1286(03)00231-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Strange behavior may occur in networks due to the non-cooperative nature of decision making, when the latter are taken by individual agents. In particular, the well known Braess paradox illustrates that when upgrading a network by adding a link, the resulting equilibrium may exhibit larger delays for all users. We present here some guidelines to avoid the Braess paradox when upgrading a network. We furthermore present conditions for the delays to be monotone increasing in the total demand. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 19 条
[1]   Non-cooperative routing in loss networks [J].
Altman, E ;
El Azouzi, R ;
Abramov, V .
PERFORMANCE EVALUATION, 2002, 49 (1-4) :257-272
[2]   Routing into two parallel links:: Game-theoretic distributed algorithms [J].
Altman, E ;
Basar, T ;
Jiménez, T ;
Shimkin, N .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2001, 61 (09) :1367-1381
[3]   Braess's paradox in a loss network [J].
Bean, NG ;
Kelly, FP ;
Taylor, PG .
JOURNAL OF APPLIED PROBABILITY, 1997, 34 (01) :155-159
[4]  
Braess D, 1968, Unternehmensforschung, V12, P258, DOI [DOI 10.1007/BF01918335, 10.1007/BF01918335]
[5]   Braess's paradox in a queueing network with state-dependent routing [J].
Calvert, B ;
Solomon, W ;
Ziedins, I .
JOURNAL OF APPLIED PROBABILITY, 1997, 34 (01) :134-154
[6]   A PARADOX OF CONGESTION IN A QUEUING NETWORK [J].
COHEN, JE ;
KELLY, FP .
JOURNAL OF APPLIED PROBABILITY, 1990, 27 (03) :730-734
[7]  
COHEN JE, 1997, IEEE ACM T NETWORK, V5, P1220
[8]   ON SOME TRAFFIC EQUILIBRIUM-THEORY PARADOXES [J].
DAFERMOS, S ;
NAGURNEY, A .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1984, 18 (02) :101-110
[9]   Braess-like paradoxes in distributed computer systems [J].
Kameda, H ;
Altman, E ;
Kozawa, T ;
Hosokawa, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (09) :1687-1691
[10]  
KAMEDA H, 1999, P IEEE CDC 99 PHOEN