Glycosylation defects: a new mechanism for muscular dystrophy?

被引:73
作者
Grewal, PK [1 ]
Hewitt, JE [1 ]
机构
[1] Univ Nottingham, Queens Med Ctr, Genet Inst, Nottingham NG7 2UH, England
关键词
D O I
10.1093/hmg/ddg272
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, post-translational modification of proteins has been defined as a new area of focus for muscular dystrophy research by the identification of a group of disease genes that encode known or putative glycosylation enzymes. Walker-Warburg Syndrome (WWS) and muscle-eye-brain disease (MEB) are caused by mutations in two genes involved in O-mannosylation, POMT1 and POMGnT1, respectively. Fukuyama muscular dystrophy (FCMD) is due to mutations in fukutin, a putative phospholigand transferase. Congenital muscular dystrophy type 1C and limb girdle muscular dystrophy type 21 are allelic, both being due to mutations in the gene-encoding fukutin-related protein (FKRP). Finally, the causative gene in the myodystrophy (myd) mouse is a putative bifunctional glycosyltransferase (Large). WWS, MEB, FCMD and the myd mouse are also associated with neuronal migration abnormalities (often type II lissencephaly) and ocular or retinal defects. A deficiency in post-translational modification of alpha-dystroglycan is a common feature of all these muscular dystrophies and is thought to involve O-glycosylation pathways. This abnormally modified alpha-dystroglycan is deficient in binding to extracellular matrix ligands, including laminin and agrin. Selective deletion of dystroglycan in the central nervous system (CNS) produces brain abnormalities with striking similarities to WWS, MEB, FCMD and the myd mouse. Thus, impaired dystroglycan function is strongly implicated in these diseases. However, it is unlikely that these five glycosylation enzymes only have a role in glycosylation of alpha-dystroglycan and it is important that other protein targets are identified.
引用
收藏
页码:R259 / R264
页数:6
相关论文
共 73 条
[1]   Animal models for muscular dystrophy: valuable tools for the development of therapies [J].
Allamand, V ;
Campbell, KP .
HUMAN MOLECULAR GENETICS, 2000, 9 (16) :2459-2467
[2]   The fukutin protein family - predicted enzymes modifying cell-surface molecules [J].
Aravind, L ;
Koonin, EV .
CURRENT BIOLOGY, 1999, 9 (22) :R836-R837
[3]   Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome [J].
Beltran-Valero de Bernabé, D ;
Currier, S ;
Steinbrecher, A ;
Celli, J ;
van Beusekom, E ;
van der Zwaag, B ;
Kayserili, H ;
Merlini, L ;
Chitayat, D ;
Dobyns, WB ;
Cormand, B ;
Lehesjoki, AE ;
Cruces, J ;
Voit, T ;
Walsh, CA ;
van Bokhoven, H ;
Brunner, HG .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 71 (05) :1033-1043
[4]   Function and genetics of dystrophin and dystrophin-related proteins in muscle [J].
Blake, DJ ;
Weir, A ;
Newey, SE ;
Davies, KE .
PHYSIOLOGICAL REVIEWS, 2002, 82 (02) :291-329
[5]   The neurobiology of Duchenne muscular dystrophy:: learning lessons from muscle? [J].
Blake, DJ ;
Kröger, S .
TRENDS IN NEUROSCIENCES, 2000, 23 (03) :92-99
[6]   Molecular diversity of the dystrophin-like protein complex in the developing and adult avian retina [J].
Blank, M ;
Blake, DJ ;
Kröger, S .
NEUROSCIENCE, 2002, 111 (02) :259-273
[7]   ELECTRON-MICROSCOPIC EVIDENCE FOR A MUCIN-LIKE REGION IN CHICK MUSCLE ALPHA-DYSTROGLYCAN [J].
BRANCACCIO, A ;
SCHULTHESS, T ;
GESEMANN, M ;
ENGEL, J .
FEBS LETTERS, 1995, 368 (01) :139-142
[8]   Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C [J].
Brockington, M ;
Yuva, Y ;
Prandini, P ;
Brown, SC ;
Torelli, S ;
Benson, MA ;
Herrmann, R ;
Anderson, LVB ;
Bashir, R ;
Burgunder, JM ;
Fallet, S ;
Romero, N ;
Fardeau, M ;
Straub, V ;
Storey, G ;
Pollitt, C ;
Richard, I ;
Sewry, CA ;
Bushby, K ;
Voit, T ;
Blake, DJ ;
Muntoni, F .
HUMAN MOLECULAR GENETICS, 2001, 10 (25) :2851-2859
[9]   Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin α2 deficiency and abnormal glycosylation of α-dystroglycan [J].
Brockington, M ;
Blake, DJ ;
Prandini, P ;
Brown, SC ;
Torelli, S ;
Benson, MA ;
Ponting, CP ;
Estournet, B ;
Romero, NB ;
Mercuri, E ;
Voit, T ;
Sewry, CA ;
Guicheney, P ;
Muntoni, F .
AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 69 (06) :1198-1209
[10]  
Brown SC, 1999, J CELL SCI, V112, P209