Anaerobic ammonium oxidation by nitrite (anammox):: Implications for N2 production in coastal marine sediments

被引:219
作者
Engström, P
Dalsgaard, T
Hulth, S [1 ]
Aller, RC
机构
[1] Univ Gothenburg, Dept Chem, SE-41296 Gothenburg, Sweden
[2] Natl Environm Res Inst, DK-8600 Silkeborg, Denmark
[3] SUNY Stony Brook, Marine Sci Res Ctr, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.gca.2004.09.032
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The respiratory reduction of nitrate (denitrification) is acknowledged as the most important process that converts biologically available nitrogen to gaseous dinitrogen (N-2) in marine ecosystems. Recent findings, however, indicate that anaerobic ammonium oxidation by nitrite (anammox) may be an important pathway for N-2 formation and N removal in coastal marine sediments and in anoxic water columns of the oceans. In the present study, we explored this novel mechanism during N mineralization by 15 N amendments (single and coupled additions of (NH4+)-N-15, (NO3-)-N-14 and (NO3-)-N-15) to surface sediments with a wide range of characteristics and overall reactivity. Patterns of N-29/30(2) production in the pore water during closed sediment incubations demonstrated anammox at all 7 of the investigated sites. Stoichiometric calculations revealed that 4% to 79% of total N-2 production was due to this novel route. The relative importance of anammox for N2 release was inversely correlated with remineralized solute production, benthic O-2 consumption, and surface sediment Ch1 a. The observed correlations indicate competition between reductants for pore water nitrite during early diagenesis and that additional factors (e.g. availability of Mn-oxides), superimposed on overall patterns of diagenetic activity, are important for determining absolute and relative rates of anammox in coastal marine sediments. Copyright (c) 2005 Elsevier Ltd
引用
收藏
页码:2057 / 2065
页数:9
相关论文
共 54 条
[1]   Biogeochemical heterogeneity and suboxic diagenesis in hemipelagic sediments of the Panama Basin [J].
Aller, RC ;
Hall, POJ ;
Rude, PD ;
Aller, JY .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 1998, 45 (01) :133-165
[3]   COMPLETE OXIDATION OF SOLID-PHASE SULFIDES BY MANGANESE AND BACTERIA IN ANOXIC MARINE-SEDIMENTS [J].
ALLER, RC ;
RUDE, PD .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1988, 52 (03) :751-765
[4]  
[Anonymous], 1983, NITROGEN MARINE ENV
[5]   Interactions between metal oxides and species of nitrogen and iodine in bioturbated marine sediments [J].
Anschutz, P ;
Sundby, B ;
Lefrançois, L ;
Luther, GW ;
Mucci, A .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2000, 64 (16) :2751-2763
[6]   OXYGEN, NUTRIENTS, CARBON AND WATER EXCHANGE IN THE SKAGERRAK BASIN [J].
AURE, J ;
DAHL, E .
CONTINENTAL SHELF RESEARCH, 1994, 14 (09) :965-977
[7]   ORGANIC-CARBON OXIDATION AND BENTHIC NITROGEN AND SILICA DYNAMICS IN SAN-CLEMENTE BASIN, A CONTINENTAL BORDERLAND SITE [J].
BENDER, M ;
JAHNKE, R ;
WEISS, R ;
MARTIN, W ;
HEGGIE, DT ;
ORCHARDO, J ;
SOWERS, T .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1989, 53 (03) :685-697
[8]   NITROGEN CYCLING IN DIFFERENT TYPES OF SEDIMENTS FROM DANISH WATERS [J].
BLACKBURN, TH ;
HENRIKSEN, K .
LIMNOLOGY AND OCEANOGRAPHY, 1983, 28 (03) :477-493
[9]   A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling [J].
Brandes, JA ;
Devol, AH .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (04)
[10]   2 KINDS OF LITHOTROPHS MISSING IN NATURE [J].
BRODA, E .
ZEITSCHRIFT FUR ALLGEMEINE MIKROBIOLOGIE, 1977, 17 (06) :491-493