Solitary waves and their critical behavior in a nonlinear nonlocal medium with power-law response

被引:43
作者
Abe, S [1 ]
Ogura, A [1 ]
机构
[1] Nihon Univ, Coll Sci & Technol, Funabashi, Chiba 2748501, Japan
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 05期
关键词
D O I
10.1103/PhysRevE.57.6066
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss a nonlocal generalization of the nonlinear Schrodinger equation and study propagation of solitary waves in a nonlinear nonlocal medium at its critical state, the response of which obeys the power law with the exponent k. Using the time-dependent variational principle, we derive a set of dynamical equations and develop the fixed-point analysis. A critical behavior is found in the k dependence of the width of the wave packet. We also present a proof of the stability of the system and discuss an oscillatory phenomenon in the self-focusing process.
引用
收藏
页码:6066 / 6070
页数:5
相关论文
共 15 条
[1]  
Agrawal G. P., 2019, Nonlinear fiber optics, V6th
[2]   VARIATIONAL APPROACH TO NON-LINEAR PULSE-PROPAGATION IN OPTICAL FIBERS [J].
ANDERSON, D .
PHYSICAL REVIEW A, 1983, 27 (06) :3135-3145
[3]   VARIATIONAL METHOD FOR STUDYING SELF-FOCUSING IN A CLASS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
COOPER, F ;
LUCHERONI, C ;
SHEPARD, H .
PHYSICS LETTERS A, 1992, 170 (03) :184-188
[4]   OBSERVATION OF SELF-TRAPPING OF AN OPTICAL BEAM DUE TO THE PHOTOREFRACTIVE EFFECT [J].
DUREE, GC ;
SHULTZ, JL ;
SALAMO, GJ ;
SEGEV, M ;
YARIV, A ;
CROSIGNANI, B ;
DIPORTO, P ;
SHARP, EJ ;
NEURGAONKAR, RR .
PHYSICAL REVIEW LETTERS, 1993, 71 (04) :533-536
[5]  
Engelbrecht J, 1997, NONLINEAR WAVE DYNAM
[6]  
Fetter A. L., 1971, Quantum Theory of Many-particle Systems
[7]  
Hardy G.H., 1952, INEQUALITIES
[8]   Solitons in optical communications [J].
Haus, HA ;
Wong, WS .
REVIEWS OF MODERN PHYSICS, 1996, 68 (02) :423-444
[9]  
KOBO R, 1985, STAT PHYSICS 2, V2
[10]  
Ma S-K., 2018, Modern theory of critical phenomena