An analysis of solar p-mode frequencies extracted from BiSON data: 1991-1996

被引:76
作者
Chaplin, WJ [1 ]
Elsworth, Y
Isaak, GR
Lines, R
McLeod, CP
Miller, BA
New, R
机构
[1] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[2] Sheffield Hallam Univ, Sch Sci & Math, Sheffield S1 1WB, S Yorkshire, England
关键词
line : profiles; methods : data analysis; Sun : interior; Sun : magnetic fields; Sun : oscillations;
D O I
10.1046/j.1365-8711.1998.01999.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a comprehensive frequency analysis of Doppler velocity observations of the visible solar disc made by the Birmingham Solar Oscillations Network (BiSON) from 1990-1996, i.e. covering the falling phase of activity cycle 22, up to and including the cycle 22/23 boundary. We have fitted low-degree (low-l) solar p modes in a variety of power spectra of differing lengths generated from these data. The analysis of the extracted frequencies reveals the expected clear solar-cycle dependence; in addition, there is now sufficient accuracy in the data to show that the low-l modal eigenfrequencies are less affected by the solar cycle than their higher l counterparts. The observed low-degree frequency shifts up to approximate to 3900 mu Hz are consistent - at the level of precision of the data - with an inverse mode-mass scaling. At frequencies above this, the blending of modes adjacent in frequency space makes it increasingly difficult to extract reliable frequency estimates. However, our data show indications of a turnover and possibly also an eventual sign change in the solar cycle shifts at frequencies above;approximate to 4000 mu Hz, as seen in higher l data. We have parametrized the observed shifts as a function of the 10.7-cm radio flux, and produced an activity-corrected, average frequency table which incorporates eigenfrequencies from 18 4-month and 9 8-month spectra. We also present the fitted frequencies from a 32-month power spectrum, generated from data collected at or close to solar minimum. In addition, we also searched for frequency asymmetries in the l = 2 mode multiplets. These could result from strong near-surface magnetic activity, or a buried magnetic field. Our fits merely place an upper limit to any mean asymmetry - over the range 10 less than or equal to n less than or equal to 21 - of between approximate to - 80 and approximate to 170 nHz (3 sigma).
引用
收藏
页码:1077 / 1090
页数:14
相关论文
共 55 条