Entropy of a subalgebra and quantum estimation

被引:14
作者
Benatti, F
机构
[1] Dipartimento Fisica Teorica, Università di Trieste, I-34100 Trieste
关键词
D O I
10.1063/1.531682
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we compare the accessible information of quantum communication channels with the entropic content of finite-dimensional matrix algebras with respect to quantum states, as defined by Connes, Narnhofer, and Thining. In particular, every Abelian n x n matrix algebra together with a density matrix define the input alphabet of a quantum communication channel whose accessible information equals the entropic content of the algebra with respect to the state. The cases n = 2 and n = 3 are concretely examined in connection with the problem of the best estimation. (C) 1996 American Institute of Physics.
引用
收藏
页码:5244 / 5258
页数:15
相关论文
共 24 条
[1]  
ALICKI R, 1995, LETT MATH PHYS, V32, P75
[2]  
[Anonymous], 1986, OPERATOR ALGEBRAS QU
[3]  
BENATTI F, 1993, TRIESTE NOTES PHYSIC
[4]  
BENATTI F, 1995, IN PRESS REP MATH PH
[5]  
BENATTI F, 1996, CONTRIBUTIONS PROBAB
[6]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[7]  
BENNETT CH, 1995, PHYSICS TODAY OCT, P24
[8]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[9]  
BRAUNSTEIN SL, 1955, ANN NY ACAD SCI, V755, P786
[10]   QUANTUM LIMITS ON BOSONIC COMMUNICATION RATES [J].
CAVES, CM ;
DRUMMOND, PD .
REVIEWS OF MODERN PHYSICS, 1994, 66 (02) :481-537