Hexokinase PII:: Structural analysis and glucose signalling in the yeast Saccharomyces cerevisiae

被引:31
作者
Mayordomo, I [1 ]
Sanz, P [1 ]
机构
[1] CSIC, Inst Biomed Valencia, Valencia 46010, Spain
关键词
hexokinase PII; glucose signalling; alanine scanning; yeast;
D O I
10.1002/yea.737
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hexokinase PII (Wxk2) is a yeast glucose phosphorylating enzyme that, besides its role in glycolysis, seems to have an additional role in glucose signalling. To study the domains in Hxk2 that may participate in this latter process, we have constructed 11 mutant alleles using site-directed mutagenesis. Six of them were clustered charged-to-alanine mutants in which clusters of charged residues mere changed to alanine residues, Two of them contained substitutions in Ser15 to either alanine or glutamic acid and three of them had deletions at either the N-terminus or the C-terminus of the protein, In most of them, the catalytic activity correlated directly with their functionality in glucose signalling, However, we found two mutants (Delta1-15 and Delta 476-486) that, having low catalytic activity, mere still fully functional in glucose signalling, This may indicate that other factors and not just the catalytic activity of the enzyme may be important for the functionality of the protein in glucose signalling, Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:923 / 930
页数:8
相关论文
共 29 条
[1]  
Baker SH, 1997, GENETICS, V145, P615
[2]   Hexokinase 2 from Saccharomyces cerevisiae:: Regulation of oligomeric structure by in vivo phosphorylation at serine-14 [J].
Behlke, J ;
Heidrich, K ;
Naumann, M ;
Müller, EC ;
Otto, A ;
Reuter, R ;
Kriegel, T .
BIOCHEMISTRY, 1998, 37 (34) :11989-11995
[3]  
Bergmeyer HI., 1974, METHODS ENZYMATIC AN
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   MOLECULAR-MODEL OF HUMAN BETA-CELL GLUCOKINASE BUILT BY ANALOGY TO THE CRYSTAL-STRUCTURE OF YEAST HEXOKINASE-B [J].
CHARLES, RS ;
HARRISON, RW ;
BELL, GL ;
PILKIS, SJ ;
WEBER, IT .
DIABETES, 1994, 43 (06) :784-791
[6]   HIGH-RESOLUTION EPITOPE MAPPING OF HGH-RECEPTOR INTERACTIONS BY ALANINE-SCANNING MUTAGENESIS [J].
CUNNINGHAM, BC ;
WELLS, JA .
SCIENCE, 1989, 244 (4908) :1081-1085
[7]   Yeast carbon catabolite repression [J].
Gancedo, JM .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (02) :334-+
[8]   GLUCOKINASE MUTATIONS ASSOCIATED WITH NON-INSULIN-DEPENDENT (TYPE-2) DIABETES-MELLITUS HAVE DECREASED ENZYMATIC-ACTIVITY - IMPLICATIONS FOR STRUCTURE-FUNCTION-RELATIONSHIPS [J].
GIDHJAIN, M ;
TAKEDA, J ;
XU, LZ ;
LANGE, AJ ;
VIONNET, N ;
STOFFEL, M ;
FROGUEL, P ;
VELHO, G ;
SUN, F ;
COHEN, D ;
PATEL, P ;
LO, YMD ;
HATTERSLEY, AT ;
LUTHMAN, H ;
WEDELL, A ;
STCHARLES, R ;
HARRISON, RW ;
WEBER, IT ;
BELL, GI ;
PILKIS, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (05) :1932-1936
[9]   NEW YEAST-ESCHERICHIA-COLI SHUTTLE VECTORS CONSTRUCTED WITH INVITRO MUTAGENIZED YEAST GENES LACKING 6-BASE PAIR RESTRICTION SITES [J].
GIETZ, RD ;
SUGINO, A .
GENE, 1988, 74 (02) :527-534
[10]   SITE-DIRECTED MUTAGENESIS BY OVERLAP EXTENSION USING THE POLYMERASE CHAIN-REACTION [J].
HO, SN ;
HUNT, HD ;
HORTON, RM ;
PULLEN, JK ;
PEASE, LR .
GENE, 1989, 77 (01) :51-59