Transition metal transporters in plants

被引:377
作者
Hall, JL [1 ]
Williams, LE [1 ]
机构
[1] Univ Southampton, Sch Biol Sci, Southampton SO16 7PX, Hants, England
关键词
CDF family; heavy metal ATPases; membrane transport; Nramp; transition metals; ZIP family;
D O I
10.1093/jxb/erg303
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Transition metals such as Fe, Cu, Mn, and Zn are essential minerals for normal plant growth and development, although they can be toxic when present in excess. Thus, for healthy plant growth, a range of transition metals must be acquired from the soil, distributed around the plant, and their concentrations carefully regulated within different cells and organelles. Membrane transport systems are likely to play a central role in these processes. The application of powerful genetic and molecular techniques has now identified a range of gene families that are likely to be involved in transition metal transport. These include the heavy metal ATPases (HMAs), the Nramps, the cation diffusion facilitator (CDF) family, the ZIP family, and the cation antiporters. This review provides a broad overview of the range of potential transport systems now thought to be involved in the uptake, distribution and homeostasis of transition metals in plants.
引用
收藏
页码:2601 / 2613
页数:13
相关论文
共 111 条
[1]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[2]   A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants [J].
Arazi, T ;
Sunkar, R ;
Kaplan, B ;
Fromm, H .
PLANT JOURNAL, 1999, 20 (02) :171-182
[3]   Metallochaperones and metal-transporting ATPases: A comparative analysis of sequences and structures [J].
Arnesano, F ;
Banci, L ;
Bertini, I ;
Ciofi-Baffoni, S ;
Molteni, E ;
Huffman, DL ;
O'Halloran, TV .
GENOME RESEARCH, 2002, 12 (02) :255-271
[4]   Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens [J].
Assunçao, AGL ;
Martins, PD ;
De Folter, S ;
Vooijs, R ;
Schat, H ;
Aarts, MGM .
PLANT CELL AND ENVIRONMENT, 2001, 24 (02) :217-226
[5]   Inventory of the superfamily of P-type ion pumps in Arabidopsis [J].
Axelsen, KB ;
Palmgren, MG .
PLANT PHYSIOLOGY, 2001, 126 (02) :696-706
[6]   MOLECULAR-IDENTIFICATION OF AN ABC TRANSPORTER COMPLEX FOR MANGANESE - ANALYSIS OF A CYANOBACTERIAL MUTANT STRAIN IMPAIRED IN THE PHOTOSYNTHETIC OXYGEN EVOLUTION PROCESS [J].
BARTSEVICH, VV ;
PAKRASI, HB .
EMBO JOURNAL, 1995, 14 (09) :1845-1853
[7]   Manganese transport in the cyanobacterium Synechocystis sp PCC 6803 [J].
Bartsevich, VV ;
Pakrasi, HB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (42) :26057-26061
[8]   Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase [J].
Beard, SJ ;
Hashim, R ;
MembrilloHernandez, J ;
Hughes, MN ;
Poole, RK .
MOLECULAR MICROBIOLOGY, 1997, 25 (05) :883-891
[9]   Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions [J].
Belouchi, A ;
Kwan, T ;
Gros, P .
PLANT MOLECULAR BIOLOGY, 1997, 33 (06) :1085-1092
[10]   The macrophage-specific membrane protein Nramp controlling natural resistance to infections in mice has homologues expressed in the root system of plants [J].
Belouchi, A ;
Cellier, M ;
Kwan, T ;
Saini, HS ;
Leroux, G ;
Gros, P .
PLANT MOLECULAR BIOLOGY, 1995, 29 (06) :1181-1196