NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa

被引:167
作者
Cano-Dominguez, Nallely [1 ]
Alvarez-Delfin, Karen [1 ]
Hansberg, Wilhelm [2 ]
Aguirre, Jesus [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fisiol Celular, Dept Mol Genet, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Fisiol Celular, Dept Bioquim, Mexico City 04510, DF, Mexico
关键词
D O I
10.1128/EC.00137-08
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We have proposed that reactive oxygen species (ROS) play essential roles in cell differentiation. Enzymes belonging to the NADPH oxidase (NOX) family produce superoxide in a regulated manner. We have identified three distinct NOX subfamilies in the fungal kingdom and have shown that NoxA is required for sexual cell differentiation in Aspergillus nidulans. Here we show that Neurospora crassa NOX-1 elimination results in complete female sterility, decreased asexual development, and reduction of hyphal growth. The lack of NOX-2 did not affect any of these processes but led instead to the production of sexual spores that failed to germinate, even in the presence of exogenous oxidants. The elimination of NOR-1, an ortholog of the mammalian Nox2 regulatory subunit gp67(phox), also caused female sterility, the production of unviable sexual spores, and a decrease in asexual development and hyphal growth. These results indicate that NOR-1 is required for NOX-1 and NOX-2 functions at different developmental stages and establish a link between NOX-generated ROS and the regulation of growth. Indeed, NOX-1 was required for the increased asexual sporulation previously observed in mutants without catalase CAT-3. We also analyzed the function of the penta-EF calcium-binding domain protein PEF-1 in N. crassa. Deletion of pef-1 resulted in increased conidiation but, in contrast to what occurs in Dictyostelium discoideum, the mutation of this peflin did not suppress the phenotypes caused by the lack of NOX-1. Our results support the role of ROS as critical cell differentiation signals and highlight a novel role for ROS in regulation of fungal growth.
引用
收藏
页码:1352 / 1361
页数:10
相关论文
共 48 条
[1]   Reactive oxygen species and development in microbial eukaryotes [J].
Aguirre, J ;
Ríos-Momberg, M ;
Hewitt, D ;
Hansberg, W .
TRENDS IN MICROBIOLOGY, 2005, 13 (03) :111-118
[2]   OXIDATION OF NEUROSPORA-CRASSA NADP-SPECIFIC GLUTAMATE-DEHYDROGENASE BY ACTIVATED OXYGEN SPECIES [J].
AGUIRRE, J ;
RODRIGUEZ, R ;
HANSBERG, W .
JOURNAL OF BACTERIOLOGY, 1989, 171 (11) :6243-6250
[3]   LEUKOCYTE OXIDASE - DEFECTIVE ACTIVITY IN CHRONIC GRANULOMATOUS DISEASE [J].
BAEHNER, RL ;
NATHAN, DG .
SCIENCE, 1967, 155 (3764) :835-&
[4]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313
[5]  
BISTIS GN, 1983, NEUROSPORA NEWSL, V30, P14
[6]   Lessons from the genome sequence of Neurospora crassa:: Tracing the path from genomic blueprint to multicellular organism [J].
Borkovich, KA ;
Alex, LA ;
Yarden, O ;
Freitag, M ;
Turner, GE ;
Read, ND ;
Seiler, S ;
Bell-Pedersen, D ;
Paietta, J ;
Plesofsky, N ;
Plamann, M ;
Goodrich-Tanrikulu, M ;
Schulte, U ;
Mannhaupt, G ;
Nargang, FE ;
Radford, A ;
Selitrennikoff, C ;
Galagan, JE ;
Dunlap, JC ;
Loros, JJ ;
Catcheside, D ;
Inoue, H ;
Aramayo, R ;
Polymenis, M ;
Selker, EU ;
Sachs, MS ;
Marzluf, GA ;
Paulsen, I ;
Davis, R ;
Ebbole, DJ ;
Zelter, A ;
Kalkman, ER ;
O'Rourke, R ;
Bowring, F ;
Yeadon, J ;
Ishii, C ;
Suzuki, K ;
Sakai, W ;
Pratt, R .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2004, 68 (01) :1-+
[7]   The role of reactive oxygen species in cell growth: lessons from root hairs [J].
Carol, Rachel J. ;
Dolan, Liam .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (08) :1829-1834
[8]   A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells [J].
Carol, RJ ;
Takeda, S ;
Linstead, P ;
Durrant, MC ;
Kakesova, H ;
Derbyshire, P ;
Drea, S ;
Zarsky, V ;
Dolan, L .
NATURE, 2005, 438 (7070) :1013-1016
[9]   Dominant active Rac and dominant negative Rac revert the dominant active Ras phenotype in Colletotrichum trifolii by distinct signalling pathways [J].
Chen, CB ;
Dickman, MB .
MOLECULAR MICROBIOLOGY, 2004, 51 (05) :1493-1507
[10]   A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors [J].
Colot, Hildur V. ;
Park, Gyungsoon ;
Turner, Gloria E. ;
Ringelberg, Carol ;
Crew, Christopher M. ;
Litvinkova, Liubov ;
Weiss, Richard L. ;
Borkovich, Katherine A. ;
Dunlap, Jay C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (27) :10352-10357