Assimilation of surface pressure observations using an ensemble filter in an idealized global atmospheric prediction system

被引:49
作者
Anderson, JL
Wyman, B
Zhang, SQ
Hoar, T
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[2] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
关键词
D O I
10.1175/JAS3510.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
An ensemble filter data assimilation system is tested in a perfect model setting using a low resolution Held-Suarez configuration of an atmospheric GCM. The assimilation system is able to reconstruct details of the model's state at all levels when only observations of surface pressure (PS) are available. The impacts of varying the spatial density and temporal frequency of PS observations are examined. The error of the ensemble mean assimilation prior estimate appears to saturate at some point as the number of PS observations available once every 24 h is increased. However, increasing the frequency with which PS observations are available from a fixed network of 1800 randomly located stations results in an apparently unbounded decrease in the assimilation's prior error for both PS and all other model state variables. The error reduces smoothly as a function of observation frequency except for a band with observation periods around 4 h. Assimilated states are found to display enhanced amplitude high-frequency gravity wave oscillations when observations are taken once every few hours, and this adversely impacts the assimilation quality. Assimilations of only surface temperature and only surface wind components are also examined. The results indicate that, in a perfect model context, ensemble filters are able to extract surprising amounts of information from observations of only a small portion of a model's spatial domain. This suggests that most of the remaining challenges for ensemble filter assimilation are confined to problems such as model error, observation representativeness error, and unknown instrument error characteristics that are outside the scope of perfect model experiments. While it is dangerous to extrapolate from these simple experiments to operational atmospheric assimilation, the results also suggest that exploring the frequency with which observations are used for assimilation may lead to significant enhancements to assimilated state estimates.
引用
收藏
页码:2925 / 2938
页数:14
相关论文
共 62 条
  • [1] The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations
    Anderson, JL
    Balaji, V
    Broccoli, AJ
    Cooke, WF
    Delworth, TL
    Dixon, KW
    Donner, LJ
    Dunne, KA
    Freidenreich, SM
    Garner, ST
    Gudgel, RG
    Gordon, CT
    Held, IM
    Hemler, RS
    Horowitz, LW
    Klein, SA
    Knutson, TR
    Kushner, PJ
    Langenhost, AR
    Lau, NC
    Liang, Z
    Malyshev, SL
    Milly, PCD
    Nath, MJ
    Ploshay, JJ
    Ramaswamy, V
    Schwarzkopf, MD
    Shevliakova, E
    Sirutis, JJ
    Soden, BJ
    Stern, WF
    Thompson, LA
    Wilson, RJ
    Wittenberg, AT
    Wyman, BL
    [J]. JOURNAL OF CLIMATE, 2004, 17 (24) : 4641 - 4673
  • [2] Anderson JL, 2003, MON WEATHER REV, V131, P634, DOI 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO
  • [3] 2
  • [4] Anderson JL, 2001, MON WEATHER REV, V129, P2884, DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO
  • [5] 2
  • [6] Anderson JL, 1999, MON WEATHER REV, V127, P2741, DOI 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO
  • [7] 2
  • [8] Burgers G, 1998, MON WEATHER REV, V126, P1719, DOI 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO
  • [9] 2
  • [10] DALEY R, 1992, MON WEATHER REV, V120, P1735, DOI 10.1175/1520-0493(1992)120<1735:EMECFA>2.0.CO