Ferruginous conditions dominated later neoproterozoic deep-water chemistry

被引:656
作者
Canfield, Donald E. [1 ,2 ]
Poulton, Simon W. [3 ]
Knoll, Andrew H. [4 ]
Narbonne, Guy M. [5 ]
Ross, Gerry [6 ]
Goldberg, Tatiana [3 ]
Strauss, Harald [7 ]
机构
[1] Univ So Denmark, Nord Ctr Earth Evolut, DK-5230 Odense, Denmark
[2] Univ So Denmark, Inst Biol, DK-5230 Odense, Denmark
[3] Newcastle Univ, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] Harvard Univ, Bot Museum, Cambridge, MA 02138 USA
[5] Queens Univ, Dept Geol Sci & Geol Engn, Kingston, ON K7L 3N6, Canada
[6] Kupaa Farm, Kula, HI 96790 USA
[7] Univ Munster, Inst Geol Palaontol, D-48149 Munster, Germany
基金
英国自然环境研究理事会;
关键词
D O I
10.1126/science.1154499
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Earth's surface chemical environment has evolved from an early anoxic condition to the oxic state we have today. Transitional between an earlier Proterozoic world with widespread deep- water anoxia and a Phanerozoic world with large oxygen- utilizing animals, the Neoproterozoic Era [ 1000 to 542 million years ago ( Ma)] plays a key role in this history. The details of Neoproterozoic Earth surface oxygenation, however, remain unclear. We report that through much of the later Neoproterozoic (< 742 +/- 6 Ma), anoxia remained widespread beneath the mixed layer of the oceans; deeper water masses were sometimes sulfidic but were mainly Fe2+- enriched. These ferruginous conditions marked a return to ocean chemistry not seen for more than one billion years of Earth history.
引用
收藏
页码:949 / 952
页数:4
相关论文
共 35 条
[1]   The evolution of the Earth surface sulfur reservoir [J].
Canfield, DE .
AMERICAN JOURNAL OF SCIENCE, 2004, 304 (10) :839-861
[2]   The Archean sulfur cycle and the early history of atmospheric oxygen [J].
Canfield, DE ;
Habicht, KS ;
Thamdrup, B .
SCIENCE, 2000, 288 (5466) :658-661
[3]   A new model for Proterozoic ocean chemistry [J].
Canfield, DE .
NATURE, 1998, 396 (6710) :450-453
[4]   Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life [J].
Canfield, Don E. ;
Poulton, Simon W. ;
Narbonne, Guy M. .
SCIENCE, 2007, 315 (5808) :92-95
[5]   Neoproterozoic Chuar Group (∼800-742 Ma), Grand Canyon:: a record of cyclic marine deposition during global cooling and supercontinent rifting [J].
Dehler, CM ;
Elrick, M ;
Karlstrom, KE ;
Smith, GA ;
Crossey, LJ ;
Timmons, JM .
SEDIMENTARY GEOLOGY, 2001, 141 :465-499
[6]   Oxidation of the Ediacaran Ocean [J].
Fike, D. A. ;
Grotzinger, J. P. ;
Pratt, L. M. ;
Summons, R. E. .
NATURE, 2006, 444 (7120) :744-747
[7]   Reconstructing marine redox conditions for the early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes [J].
Goldberg, Tatiana ;
Strauss, Harald ;
Guo, Qingjun ;
Liu, Congqiang .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2007, 254 (1-2) :175-193
[8]   MICROFOSSILS FROM SILICIFIED STROMATOLITIC CARBONATES OF THE UPPER PROTEROZOIC LIMESTONE-DOLOMITE SERIES, CENTRAL EAST GREENLAND [J].
GREEN, JW ;
KNOLL, AH ;
SWETT, K .
GEOLOGICAL MAGAZINE, 1989, 126 (05) :567-585
[9]   28th DeBeers Alex. Du Toit Memorial Lecture, 2004. On Cryogenian (Neoproterozoic) ice-sheet dynamics and the limitations of the glacial sedimentary record [J].
Hoffman, Paul F. .
SOUTH AFRICAN JOURNAL OF GEOLOGY, 2005, 108 (04) :557-577
[10]   A Neoproterozoic snowball earth [J].
Hoffman, PF ;
Kaufman, AJ ;
Halverson, GP ;
Schrag, DP .
SCIENCE, 1998, 281 (5381) :1342-1346