Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics

被引:345
作者
Lucchetta, EM
Lee, JH
Fu, LA
Patel, NH
Ismagilov, RF
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Integrat Biol Mol & Cell Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1038/nature03509
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biochemical networks are perturbed both by fluctuations in environmental conditions and genetic variation. These perturbations must be compensated for, especially when they occur during embryonic pattern formation. Complex chemical reaction networks displaying spatiotemporal dynamics have been controlled and understood by perturbing their environment in space and time(1-3). Here, we apply this approach using microfluidics to investigate the robust network in Drosophila melanogaster that compensates for variation in the Bicoid morphogen gradient. We show that the compensation system can counteract the effects of extremely unnatural environmental conditions-a temperature step-in which the anterior and posterior halves of the embryo are developing at different temperatures and thus at different rates. Embryonic patterning was normal under this condition, suggesting that a simple reciprocal gradient system is not the mechanism of compensation. Time-specific reversals of the temperature step narrowed down the critical period for compensation to between 65 and 100 min after onset of embryonic development. The microfluidic technology used here may prove useful to future studies, as it allows spatial and temporal regulation of embryonic development.
引用
收藏
页码:1134 / 1138
页数:5
相关论文
共 21 条
[1]   Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping [J].
Anderson, JR ;
Chiu, DT ;
Jackman, RJ ;
Cherniavskaya, O ;
McDonald, JC ;
Wu, HK ;
Whitesides, SH ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3158-3164
[2]   Hypoxia and nitric oxide induce a rapid, reversible cell cycle arrest of the drosophila syncytial divisions [J].
DiGregorio, PJ ;
Ubersax, JA ;
O'Farrell, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (03) :1930-1937
[3]   THE BICOID PROTEIN DETERMINES POSITION IN THE DROSOPHILA EMBRYO IN A CONCENTRATION-DEPENDENT MANNER [J].
DRIEVER, W ;
NUSSLEINVOLHARD, C .
CELL, 1988, 54 (01) :95-104
[4]  
FOE VE, 1993, DEV DROSOPHILA MELAN
[5]   CHARACTERIZATION AND LOCALIZATION OF THE EVEN-SKIPPED PROTEIN OF DROSOPHILA [J].
FRASCH, M ;
HOEY, T ;
RUSHLOW, C ;
DOYLE, H ;
LEVINE, M .
EMBO JOURNAL, 1987, 6 (03) :749-759
[6]   Automated sorting of live transgenic embryos [J].
Furlong, EEM ;
Profitt, D ;
Scott, MP .
NATURE BIOTECHNOLOGY, 2001, 19 (02) :153-156
[7]   A rapid diffusion immunoassay in a T-sensor [J].
Hatch, A ;
Kamholz, AE ;
Hawkins, KR ;
Munson, MS ;
Schilling, EA ;
Weigl, BH ;
Yager, P .
NATURE BIOTECHNOLOGY, 2001, 19 (05) :461-465
[8]   Establishment of developmental precision and proportions in the early Drosophila embryo [J].
Houchmandzadeh, B ;
Wieschaus, E ;
Leibler, S .
NATURE, 2002, 415 (6873) :798-802
[9]   Dynamic control of positional information in the early Drosophila embryo [J].
Jaeger, J ;
Surkova, S ;
Blagov, M ;
Janssens, H ;
Kosman, D ;
Kozlov, KN ;
Manu ;
Myasnikova, E ;
Vanario-Alonso, CE ;
Samsonova, M ;
Sharp, DH ;
Reinitz, J .
NATURE, 2004, 430 (6997) :368-371
[10]   Microfabrication inside capillaries using multiphase laminar flow patterning [J].
Kenis, PJA ;
Ismagilov, RF ;
Whitesides, GM .
SCIENCE, 1999, 285 (5424) :83-85