Error structure and identification condition in maximum likelihood nonmetric multidimensional scaling

被引:2
作者
Abe, M [1 ]
机构
[1] Univ Tokyo, Fac Econ, Bunkyo Ku, Tokyo 1130033, Japan
关键词
MDS; maximum likelihood estimation; logit model;
D O I
10.1016/S0377-2217(98)00146-5
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The author addresses two previously unresolved issues in maximum likelihood estimation (MLE) for multidimensional scaling (MDS). First, a theoretically consistent error model for nonmetric MLDMS is proposed. In particular, theoretical arguments are given that the disturbance should be multiplicative with distance when a stochastic choice model is used on rank-ordered similarity data. This assumption implies that the systematic component of similarity in the rank order is a logarithmic function of distances between stimuli. Second, a problem with identification condition of the maximum likelihood estimators is raised. The author provides a set of constraints that guarantees the identification in MLE, and produces more desirable asymptotic confidence regions that are parameter independent. An example using perception of business schools illustrates these ideas and demonstrates the computational tractability of the MLE approach to MDS. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:216 / 227
页数:12
相关论文
共 19 条
[1]   High-dimensional multivariate probit analysis [J].
Bock, RD ;
Gibbons, RD .
BIOMETRICS, 1996, 52 (04) :1183-1194
[2]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[4]   PERCEPTUAL MAPPING USING ORDERED LOGIT ANALYSIS [J].
KATAHIRA, H .
MARKETING SCIENCE, 1990, 9 (01) :1-17
[5]   MULTIDIMENSIONAL-SCALING BY OPTIMIZING GOODNESS OF FIT TO A NONMETRIC HYPOTHESIS [J].
KRUSKAL, JB .
PSYCHOMETRIKA, 1964, 29 (01) :1-27
[6]  
KRUSKAL JB, 1965, J ROY STAT SOC B, V27, P251
[7]  
Little RJA., 1987, STAT ANAL MISSING DA
[8]  
MacKay DB, 1986, MARKET SCI, V5, P325, DOI DOI 10.1287/MKSC.5.4.325
[9]   THE ROBUSTNESS OF MDS CONFIGURATIONS IN THE CASE OF INCOMPLETE DATA [J].
MALHOTRA, NK ;
JAIN, AK ;
PINSON, C .
JOURNAL OF MARKETING RESEARCH, 1988, 25 (01) :95-102
[10]   CONFIDENCE REGIONS FOR MULTIDIMENSIONAL-SCALING ANALYSIS [J].
RAMSAY, JO .
PSYCHOMETRIKA, 1978, 43 (02) :145-160