Response of fluoranthene-degrading bacteria to surfactants

被引:69
作者
Willumsen, PA [1 ]
Karlson, U
Pritchard, PH
机构
[1] Natl Environm Res Inst, Dept Marine Ecol & Microbiol, Roskilde, Denmark
[2] USN, Res Lab, Environm Qual Sci Sect, Washington, DC 20375 USA
关键词
D O I
10.1007/s002530051323
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A prerequisite for surfactant-enhanced biodegradation is that the microorganisms survive, take up substrate and degrade it in the presence of the surfactant. Two Mycobacterium and two Sphingomonas strains, degrading fluoranthene, were investigated for their sensitivity towards non-ionic chemical surfactants. The effect of Triton X-100 and Tween 80 above their critical micelle concentration on mineralization of [C-14]-glucose and [C-14]-fluoranthene was measured in shaker cultures. Tween 80 had no toxic effect on any of the tested strains. The surfactant inhibited fluoranthene mineralization by the hydrophobic Mycobacterium spp. slightly, but more than doubled that by the two less hydrophobic Sphingomonas strains. Triton X-100 inhibited fluoranthene mineralization by all strains, yet this was more pronounced for the Sphingomonas spp. Both surfactants caused cell wall permeabilization, as shown by transient colouring of surfactant-containing media. Inhibition of glucose mineralization, indicating non-specific toxic effects of Triton X-100, was observed only for the Sphingomonas strains and the toxicity was caused by micelle-to-cell interactions. These strains, however, appeared to recover from initial Triton X-100 toxicity within 50-500 h of exposure. The ratio of surfactant concentration to initial cell density was found to determine critically the bacterial response to surfactants. For both Sphingomonas and Mycobacterium strains, this work indicates that fluoranthene solubilized in surfactant micelles is only partially available for mineralization by the bacteria tested. However, our results suggest that optimal conditions for polycyclic aromatic hydrocarbon mineralization can be developed by selection of the proper surfactant, bacterial strains, cell density and incubation conditions.
引用
收藏
页码:475 / 483
页数:9
相关论文
共 34 条
[1]   EFFECT OF SURFACTANTS AT LOW CONCENTRATIONS ON THE DESORPTION AND BIODEGRADATION OF SORBED AROMATIC-COMPOUNDS IN SOIL [J].
ARONSTEIN, BN ;
CALVILLO, YM ;
ALEXANDER, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1991, 25 (10) :1728-1731
[2]   EFFECT OF TWEEN-80 AND OLEIC-ACID ON LIGNINASE PRODUCTION BY PHANEROCHAETE-CHRYSOSPORIUM INA-12 [J].
ASTHER, M ;
CORRIEU, G ;
DRAPRON, R ;
ODIER, E .
ENZYME AND MICROBIAL TECHNOLOGY, 1987, 9 (04) :245-249
[3]  
BAUER P, 1990, 8 DECHEMA BIOT C VCH, P637
[4]  
CSERHATI T, 1991, APPL MICROBIOL BIOT, V35, P115, DOI 10.1007/BF00180647
[5]   SOLUBILIZATION OF POLYCYCLIC AROMATIC-HYDROCARBONS IN MICELLAR NONIONIC SURFACTANT SOLUTIONS [J].
EDWARDS, DA ;
LUTHY, RG ;
LIU, ZB .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1991, 25 (01) :127-133
[6]   BIODEGRADATION BY AN ARTHROBACTER SPECIES OF HYDROCARBONS PARTITIONED INTO AN ORGANIC-SOLVENT [J].
EFROYMSON, RA ;
ALEXANDER, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1991, 57 (05) :1441-1447
[7]   INDIGENOUS AND ENHANCED MINERALIZATION OF PYRENE, BENZO[A]PYRENE, AND CARBAZOLE IN SOILS [J].
GROSSER, RJ ;
WARSHAWSKY, D ;
VESTAL, JR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1991, 57 (12) :3462-3469
[8]   MINERALIZATION OF PHENANTHRENE BY A MYCOBACTERIUM SP [J].
GUERIN, WF ;
JONES, GE .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1988, 54 (04) :937-944
[9]   Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants [J].
Guha, S ;
Jaffe, PR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1996, 30 (02) :605-611
[10]   MECHANISMS OF RESISTANCE OF WHOLE CELLS TO TOXIC ORGANIC-SOLVENTS [J].
HEIPIEPER, HJ ;
WEBER, FJ ;
SIKKEMA, J ;
KEWELOH, H ;
DEBONT, JAM .
TRENDS IN BIOTECHNOLOGY, 1994, 12 (10) :409-415