Optimized structures for photonic quasicrystals

被引:99
作者
Rechtsman, Mikael C. [1 ]
Jeong, Hyeong-Chai [2 ]
Chaikin, Paul M. [3 ,4 ]
Torquato, Salvatore [5 ,6 ,7 ,8 ,9 ]
Steinhardt, Paul J. [1 ,8 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Sejong Univ, Dept Phys, Seoul 143747, South Korea
[3] NYU, Dept Phys, New York, NY 10003 USA
[4] NYU, Ctr Soft Condensed Matter Res, New York, NY 10003 USA
[5] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[6] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[7] Princeton Univ, PRISM, Princeton, NJ 08544 USA
[8] Princeton Ctr Theoret Phys, Princeton, NJ 08544 USA
[9] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08544 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.101.073902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A photonic quasicrystal consists of two or more dielectric materials arranged in a quasiperiodic pattern with noncrystallographic symmetry that has a photonic band gap. We use a novel method to find the pattern with the widest TM-polarized gap for two-component materials. Patterns are obtained by computing a finite sum of density waves, assigning regions where the sum exceeds a threshold to a material with one dielectric constant, epsilon(1), and all other regions to another, epsilon(0). Compared to optimized crystals, optimized quasicrystals have larger gaps at low constrasts epsilon(1)/epsilon(0) and have gaps that are much more isotropic for all contrasts. For high contrasts, optimized hexagonal crystals have the largest gaps.
引用
收藏
页数:4
相关论文
共 19 条
[1]  
Burger M, 2004, IEICE T ELECTRON, VE87C, P258
[2]   Light transport through the band-edge states of Fibonacci quasicrystals [J].
Dal Negro, L ;
Oton, CJ ;
Gaburro, Z ;
Pavesi, L ;
Johnson, P ;
Lagendijk, A ;
Righini, R ;
Colocci, M ;
Wiersma, DS .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4-055501
[3]   Three-dimensional photonic quasicrystal with a complete band gap [J].
Dyachenko, P. N. ;
Miklyaev, Yu. V. ;
Dmitrienko, V. E. .
JETP LETTERS, 2007, 86 (04) :240-243
[4]  
DYACHENKO PN, 2006, P SPIE INT SOC OPT E, V6182
[5]   Photonic crystals [J].
Joannopoulos, JD ;
Villeneuve, PR ;
Fan, SH .
SOLID STATE COMMUNICATIONS, 1997, 102 (2-3) :165-173
[7]   Maximizing band gaps in two-dimensional photonic crystals by using level set methods [J].
Kao, CY ;
Osher, S ;
Yablonovitch, E .
APPLIED PHYSICS B-LASERS AND OPTICS, 2005, 81 (2-3) :235-244
[8]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[9]   QUASI-CRYSTALS .1. DEFINITION AND STRUCTURE [J].
LEVINE, D ;
STEINHARDT, PJ .
PHYSICAL REVIEW B, 1986, 34 (02) :596-616
[10]   Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups [J].
Maldovan, M ;
Ullal, CK ;
Carter, WC ;
Thomas, EL .
NATURE MATERIALS, 2003, 2 (10) :664-667