The Stone Age Revisited: Building a Monolithic Inorganic Lithium-Ion Battery

被引:97
作者
Delaizir, Gaelle [1 ]
Viallet, Virginie [2 ]
Aboulaich, Abdelmaula [3 ]
Bouchet, Renaud [3 ]
Tortet, Laurence [3 ]
Seznec, Vincent [2 ]
Morcrette, Mathieu [2 ]
Tarascon, Jean-Marie [2 ]
Rozier, Patrick [1 ]
Dolle, Mickael [1 ]
机构
[1] CNRS, Ctr Elaborat Mat & Etudes Struct, UPR 8011, F-31055 Toulouse, France
[2] Univ Picardie Jules Verne, Lab Reactivite & Chim Solides, UMR 6007, F-80039 Amiens, France
[3] Univ Aix Marseille 1, CNRS, UMR 7246, Ctr St Jerome,Lab MADIREL, F-13397 Marseille 20, France
关键词
electroceramics; spark plasma sintering; superionic conductors; composite electrodes; solid-state batteries; SECONDARY BATTERIES; SOLID-ELECTROLYTE; CHALLENGES;
D O I
10.1002/adfm.201102479
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new path for the design of safe and efficient, all-solid-state Li-ion batteries by spark plasma sintering (SPS) is considered. To reach a good electrochemical performance from such batteries, several parameters are investigated, such as the composite-electrode formulation (active material/electrolyte/carbon ratio) and the influence of the sintering parameters on their compactness. The formulation is optimized to ensure good ionic and electronic percolation through the composite electrode's volume. The compactness has to be sufficient to guarantee a good mechanical aspect, while the residual porosity in the composite electrode allows electrode-volume changes upon insertion and deinsertion, preserving the electrode/electrolyte interfaces, which are crucial in such technology. Based on these investigations, an all-solid-state battery with a surface capacity of 2.2 mA h cm-2 is assembled by SPS, displaying a promising electrochemical performance at 80 degrees C.
引用
收藏
页码:2140 / 2147
页数:8
相关论文
共 24 条
[1]   A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries [J].
Aboulaich, Abelmaula ;
Bouchet, Renaud ;
Delaizir, Gaelle ;
Seznec, Vincent ;
Tortet, Laurence ;
Morcrette, Mathieu ;
Rozier, Patrick ;
Tarascon, Jean-Marie ;
Viallet, Virginie ;
Dolle, Mickael .
ADVANCED ENERGY MATERIALS, 2011, 1 (02) :179-183
[2]   Fabrication and electrochemical characteristics of all- solid-state lithium-ion batteries using V2O5 thin films for both electrodes [J].
Baba, M ;
Kumagai, N ;
Kobayashi, H ;
Nakano, O ;
Nishidate, K .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (07) :320-322
[3]   Comparative study of lithium ion conductors in the system Li1-xAlxA2-xIV (PO4)3 with AIV = Ti or Ge and 0≤x≤0.7 for use as Li+ sensitive membranes [J].
Cretin, M ;
Fabry, P .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1999, 19 (16) :2931-2940
[4]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[5]   Solid-state thin-film rechargeable batteries [J].
Dudney, NJ .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 116 (03) :245-249
[6]   Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3 [J].
Feng, J. K. ;
Lu, L. ;
Lai, M. O. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 501 (02) :255-258
[7]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[8]   Runaway risk of forming toxic compounds [J].
Hammami, A ;
Raymond, N ;
Armand, M .
NATURE, 2003, 424 (6949) :635-636
[9]   All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes [J].
Hayashi, A ;
Ohtomo, T ;
Mizuno, F ;
Tadanaga, K ;
Tatsumisago, M .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (08) :701-705
[10]   Formation of electrode-electrolyte interface by lithium insertion to SnS-P2S5 negative electrode materials in all-solid-state cells [J].
Hayashi, Akitoshi ;
Konishi, Takanori ;
Tadanaga, Kiyoharu ;
Tatsumisago, Masahiro .
SOLID STATE IONICS, 2006, 177 (26-32) :2737-2740