Influence of human-induced disturbance on benthic microbial metabolism in the Pichavaram mangroves, Vellar-Coleroon estuarine complex, India

被引:48
作者
Alongi, DM
Ramanathan, AL
Kannan, L
Tirendi, F
Trott, LA
Krishna Prasad, MB
机构
[1] Australian Inst Marine Sci, Townsville, Qld 4810, Australia
[2] Jawaharlal Nehru Univ, Sch Environm Sci, New Delhi 110067, India
[3] Annamalai Univ, Ctr Adv Study Marine Biol, Parangipettai 608502, India
关键词
D O I
10.1007/s00227-005-1634-5
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Large areas of mangroves in India are heavily disturbed by cattle grazing, hypersalinity, and other human-induced impacts. In two disturbed Avicennia marina forests and two undisturbed A. marina and Rhizophora apiculata forests in the Pichavaram mangroves of the Vellar-Coleroon estuarine complex, southeast India, we measured the rates and pathways of microbial decomposition of soil organic matter to determine if human impact is altering biogeochemical activity within these stands. Rates of total carbon oxidation (T-COX) were higher in the undisturbed A. marina forest (mean 199 mol C m(-2) year(-1)) than in the two impacted stands (43 and 79 mol C m(-2) year(-1)); rates of total carbon oxidation in the R. apiculata forest averaged 75 mol C m(-2) year(-1). Sulphate reduction (range 21-319 mmol S m(-2) day(-1)) was the major decomposition pathway (65-85% of TCOX), except at the most disturbed forest (30% of TCOX). Rates of sulphate reduction at all sites peaked in sub-surface soils to a depth of about 1 m, leading to little carbon burial (3-5% of total C input). There was some evidence of measurable iron and manganese reduction in association with tree roots. Rates of microbial activity were rapid in comparison with rates measured in other mangrove soils, reflecting high rates of phytoplankton production and organic matter retention in this lagoon. Human-induced disturbance creates a sharp zonation of dry, hypersaline soil overlying less saline, wetter soil, suppressing surface microbial and root growth. We conclude that this vertical alteration of soil characteristics and biogeochemistry shifts the cycling of nutrients between trees and microbes to a disequilibrium state, partly explaining why mangroves are stunted in these declining forests.
引用
收藏
页码:1033 / 1044
页数:12
相关论文
共 25 条
[1]   Nutrient capital in different aged forests of the mangrove Rhizophora apiculata [J].
Alongi, DM ;
Wattayakorn, G ;
Tirendi, F ;
Dixon, P .
BOTANICA MARINA, 2004, 47 (02) :116-124
[2]   Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand [J].
Alongi, DM ;
Wattayakorn, G ;
Pfitzner, J ;
Tirendi, F ;
Zagorskis, I ;
Brunskill, GJ ;
Davidson, A ;
Clough, BF .
MARINE GEOLOGY, 2001, 179 (1-2) :85-103
[3]   Benthic decomposition rates and pathways in plantations of the mangrove Rhizophora apiculata in the Mekong delta, Vietnam [J].
Alongi, DM ;
Tirendi, F ;
Trott, LA ;
Xuan, TT .
MARINE ECOLOGY PROGRESS SERIES, 2000, 194 :87-101
[4]  
BERNER RA, 1980, EARLY DIAGENESIS
[5]  
BOTO KG, 1992, POLLUTION TROPICAL A, P129
[6]  
Canfield D.E., 1993, INTERACTIONS C N P S, P333, DOI DOI 10.1007/978-3-642-76064-8_14
[7]  
FOSSING H, 1989, BIOGEOCHEMISTRY, V8, P205
[8]  
Fu CB, 1998, ASIAN CHANGE CONTEXT, P308
[9]   RAPID, SMALL-VOLUME, FLOW-INJECTION ANALYSIS FOR SIGMA-CO2 AND NH4+ IN MARINE AND FRESH-WATERS [J].
HALL, PO ;
ALLER, RC .
LIMNOLOGY AND OCEANOGRAPHY, 1992, 37 (05) :1113-1119
[10]   A review of studies on Pichavaram mangrove, southeast India [J].
Kathiresan, K .
HYDROBIOLOGIA, 2000, 430 (1-3) :185-205