Evidence for the flexible sensorimotor strategies predicted by optimal feedback control

被引:331
作者
Liu, Dan [1 ]
Todorov, Emanuel [1 ]
机构
[1] Univ Calif San Diego, Dept Cognit Sci, La Jolla, CA 92093 USA
关键词
arm movement; optimal feedback control; composite cost; obstacle avoidance; stability-accuracy trade-off; behavioral flexibility;
D O I
10.1523/JNEUROSCI.1110-06.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Everyday movements pursue diverse and often conflicting mixtures of task goals, requiring sensorimotor strategies customized for the task at hand. Such customization is mostly ignored by traditional theories emphasizing movement geometry and servo control. In contrast, the relationship between the task and the strategy most suitable for accomplishing it lies at the core of our optimal feedback control theory of coordination. Here, we show that the predicted sensitivity to task goals affords natural explanations to a number of novel psychophysical findings. Our point of departure is the little-known fact that corrections for target perturbations introduced late in a reaching movement are incomplete. We show that this is not simply attributable to lack of time, in contradiction with alternative models and, somewhat paradoxically, in agreement with our model. Analysis of optimal feedback gains reveals that the effect is partly attributable to a previously unknown trade-off between stability and accuracy. This yields a testable prediction: if stability requirements are decreased, then accuracy should increase. We confirm the prediction experimentally in three-dimensional obstacle avoidance and interception tasks in which subjects hit a robotic target with programmable impedance. In additional agreement with the theory, we find that subjects do not rely on rigid control strategies but instead exploit every opportunity for increased performance. The modeling methodology needed to capture this extra flexibility is more general than the linear-quadratic methods we used previously. The results suggest that the remarkable flexibility of motor behavior arises from sensorimotor control laws optimized for composite cost functions.
引用
收藏
页码:9354 / 9368
页数:15
相关论文
共 54 条
[1]   Dynamic optimization of human walking [J].
Anderson, FC ;
Pandy, MG .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2001, 123 (05) :381-390
[2]  
Bernshtein N. A., 1967, COORDINATION REGULAT
[3]  
Bertsekas D. P., 2001, DYNAMIC PROGRAMMING
[4]   DOES THE NERVOUS-SYSTEM USE EQUILIBRIUM-POINT CONTROL TO GUIDE SINGLE AND MULTIPLE JOINT MOVEMENTS [J].
BIZZI, E ;
HOGAN, N ;
MUSSAIVALDI, FA ;
GISZTER, S .
BEHAVIORAL AND BRAIN SCIENCES, 1992, 15 (04) :603-613
[5]   The central nervous system stabilizes unstable dynamics by learning optimal impedance [J].
Burdet, E ;
Osu, R ;
Franklin, DW ;
Milner, TE ;
Kawato, M .
NATURE, 2001, 414 (6862) :446-449
[6]   Modeling sensorimotor learning with linear dynamical systems [J].
Cheng, S ;
Sabes, PN .
NEURAL COMPUTATION, 2006, 18 (04) :760-793
[7]   KINEMATIC AND ELECTROMYOGRAPHIC RESPONSES TO PERTURBATION OF A RAPID GRASP [J].
COLE, KJ ;
ABBS, JH .
JOURNAL OF NEUROPHYSIOLOGY, 1987, 57 (05) :1498-1510
[8]   Forward modeling allows feedback control for fast reaching movements [J].
Desmurget, M ;
Grafton, S .
TRENDS IN COGNITIVE SCIENCES, 2000, 4 (11) :423-431
[9]   Neural correlates of reach errors [J].
Diedrichsen, J ;
Hashambhoy, Y ;
Rane, T ;
Shadmehr, R .
JOURNAL OF NEUROSCIENCE, 2005, 25 (43) :9919-9931
[10]   Structure of joint variability in bimanual pointing tasks [J].
Domkin, D ;
Laczko, J ;
Jaric, S ;
Johansson, H ;
Latash, ML .
EXPERIMENTAL BRAIN RESEARCH, 2002, 143 (01) :11-23