Glucose, glutathione, and cellular response to spermine oxidation products

被引:28
作者
Agostinelli, E
Przybytkowski, E
AverillBates, DA
机构
[1] UNIV QUEBEC,DEPT CHIM,MONTREAL,PQ H3C 3P8,CANADA
[2] UNIV ROMA LA SAPIENZA,DEPT BIOCHEM SCI A ROSSI FANELLI,ROME,ITALY
[3] CNR,CTR MOLEC BIOL,ROME,ITALY
[4] GRP RECH BIOTHERAPEUT MOL,MONTREAL,PQ,CANADA
关键词
polyamines; amine oxidase; cytotoxicity; glutathione; pentose phosphate cycle; L-buthionine sulfoximine; acrolein; hydrogen peroxide; free radicals;
D O I
10.1016/0891-5849(95)02149-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bovine serum amineoxidase (BSAO) oxidatively deaminates polyamines, which contain primary amine groups with formation of several toxic products, H2O2, and aldehyde(s). We evaluated the role of glucose metabolism via the pentose phosphate cycle and the level of intracellular glutathione on cytotoxicity induced by each of the toxic products in Chinese hamster ovary (CHO) cells. Glucose protected cells against cytotoxicity in the presence of BSAO at low spermine concentrations (< 50 mu M), where H2O2 was the only toxic species present. When catalase was present, cytotoxicity is attributed to spermine-derived aldehyde(s). Glucose did not protect cells against cytotoxicity induced by spermine-derived aldehyde(s), nor by the aldehyde acrolein. Hydrogen peroxide produced by spermine and BSAO stimulated pentose cycle activity, whereas the aldehyde(s) did not. Depletion of intracellular glutathione with L-buthionine sulfoximine (1 mM, 24 h) sensitized cells to the cytotoxic effects of both H2O2 and the aldehyde(s) produced by spermine and BSAO. The pentose cycle and the glutathione redox cycle have an important role in protection against H2O2 generated from spermine oxidation. Glutathione appears to have a role in protecting cells against cytotoxicity attributed to spermine-derived aldehyde(s), most likely by conjugation in a reaction catalyzed by glutathione S-transferase, whereas metabolism of glucose via the pentose cycle did not. The metabolism of both glucose and glutathione, affect the cellular response to H2O2 and aldehyde(s) derived from spermine, although different pathways are involved.
引用
收藏
页码:649 / 656
页数:8
相关论文
共 26 条
[1]   HEAT ENHANCEMENT OF CYTOTOXICITY INDUCED BY OXIDATION-PRODUCTS OF SPERMINE IN CHINESE-HAMSTER OVARY CELLS [J].
AGOSTINELLI, E ;
PRZYBYTKOWSKI, E ;
MONDOVI, B ;
AVERILLBATES, DA .
BIOCHEMICAL PHARMACOLOGY, 1994, 48 (06) :1181-1186
[2]  
Agostinelli E., 1991, LIFE CHEM REP, V9, P193
[4]  
ANDERSON ME, 1989, HDB METHODS OXYGEN R, P283
[5]   THE ROLE OF GLUCOSE IN CELLULAR DEFENSES AGAINST CYTOTOXICITY OF HYDROGEN-PEROXIDE IN CHINESE-HAMSTER OVARY CELLS [J].
AVERILLBATES, DA ;
PRZYBYTKOWSKI, E .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 312 (01) :52-58
[6]   ALDEHYDE DEHYDROGENASE AND CYTOTOXICITY OF PURIFIED BOVINE SERUM AMINE OXIDASE AND SPERMINE IN CHINESE-HAMSTER OVARY CELLS [J].
AVERILLBATES, DA ;
AGOSTINELLI, E ;
PRZYBYTKOWSKI, E ;
MONDOVI, B .
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 1994, 72 (1-2) :36-42
[7]   CYTOTOXICITY AND KINETIC-ANALYSIS OF PURIFIED BOVINE SERUM AMINE OXIDASE IN THE PRESENCE OF SPERMINE IN CHINESE-HAMSTER OVARY CELLS [J].
AVERILLBATES, DA ;
AGOSTINELLI, E ;
PRZYBYTKOWSKI, E ;
MATEESCU, MA ;
MONDOVI, B .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 300 (01) :75-79
[8]  
Bachrach U, 1989, PHYSL POLYAMINES
[9]  
BATES DA, 1986, CANCER RES, V46, P5477
[10]  
BERHANE K, 1990, MOL PHARMACOL, V37, P251