The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags

被引:211
作者
Hebert, DN [1 ]
Garman, SC
Molinari, M
机构
[1] Univ Massachusetts, Dept Biochem & Mol Biol, Mol & Cellular Biol Program, Amherst, MA 01003 USA
[2] Inst Res Biomed, CH-6500 Bellinzona, Switzerland
关键词
D O I
10.1016/j.tcb.2005.05.007
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The majority of proteins that traverse the secretory pathway receive asparagine (Asn)-linked glycosylations. Glycans are bulky hydrophilic modifications that serve a variety of structural and functional roles within the cell. Here, we review the recent growing knowledge on the role of Asn-linked glycans as maturation and quality-control protein tags in the early secretory pathway. The carbohydrate composition encodes crucial information about the structure, localization and age of glycoproteins. The 'glycan code' is encoded by a series of glycosidases and carbohydrate transferases that line the secretory pathway. This code is deciphered by carbohydrate-binding proteins that possess distinct carbohydrate binding properties and act as molecular chaperones or sorting receptors. These glycosidases and transferases work in concert with resident secretory pathway carbohydrate-binding proteins to form a network that assists in the maturation and trafficking of both native and aberrant glycoproteins within the cell.
引用
收藏
页码:364 / 370
页数:7
相关论文
共 72 条
[1]   Congenital disorders of glycosylation: genetic model systems lead the way [J].
Aebi, M ;
Hennet, T .
TRENDS IN CELL BIOLOGY, 2001, 11 (03) :136-141
[2]   INTRACELLULAR FOLDING OF TISSUE-TYPE PLASMINOGEN-ACTIVATOR - EFFECTS OF DISULFIDE BOND FORMATION ON N-LINKED GLYCOSYLATION AND SECRETION [J].
ALLEN, S ;
NAIM, HY ;
BULLEID, NJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (09) :4797-4804
[3]   The lectin ERGIC-53 is a cargo transport receptor for glycoproteins [J].
Appenzeller, C ;
Andersson, H ;
Kappeler, F ;
Hauri, HP .
NATURE CELL BIOLOGY, 1999, 1 (06) :330-334
[4]   pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release [J].
Appenzeller-Herzog, C ;
Roche, AC ;
Nufer, O ;
Hauri, HP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) :12943-12950
[5]   On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database [J].
Apweiler, R ;
Hermjakob, H ;
Sharon, N .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1999, 1473 (01) :4-8
[6]   Dissecting glycoprotein quality control in the secretory pathway [J].
Cabral, CM ;
Liu, Y ;
Sifers, RN .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (10) :619-624
[7]   The endoplasmic reticulum glucosyltransferase recognizes nearly native glycoprotein folding intermediates [J].
Caramelo, JJ ;
Castro, OA ;
de Prat-Gay, G ;
Parodi, AJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :46280-46285
[8]   COTRANSLATIONAL FOLDING AND CALNEXIN BINDING DURING GLYCOPROTEIN-SYNTHESIS [J].
CHEN, W ;
HELENIUS, J ;
BRAAKMAN, I ;
HELENIUS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6229-6233
[9]   N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin [J].
Daniels, R ;
Kurowski, B ;
Johnson, AE ;
Hebert, DN .
MOLECULAR CELL, 2003, 11 (01) :79-90
[10]   Setting the standards: Quality control in the secretory pathway [J].
Ellgaard, L ;
Molinari, M ;
Helenius, A .
SCIENCE, 1999, 286 (5446) :1882-1888