The pattern of circulating iodothyronines in the fetus differs from that in the adult, being characterized by low levels of serum T-3. In this study, concentrations of various iodothyronines were measured in sera from neonates of various postconceptional age (PA). Results obtained in cord sera at birth (PA, 24-40 weeks), reflecting the fetal pattern, were compared with those found during extrauterine life in newborns of 5 days or more of postnatal life (PA, 27-46 weeks). The main findings are: Starting at 30 weeks of PA, serum levels increase linearly during extrauterine life; and at 40 weeks, they are more than 200% of those measured in cord sera from newborns of equivalent PA. Serum reverse T-3 (rT3) levels during fetal life are higher than those measured during extrauterine life; but they significantly decrease, starting at 30 weeks of PA. Serum T-3 sulfate (T3S) does not significantly differ between the two groups, showing the highest values at 28-30 weeks of PA, and significantly decreasing at 30-40 weeks. T3S levels are directly correlated with rT3, both in fetal and extrauterine life, whereas a significant negative correlation between T3S and T-3 is found only during extrauterine life. In conclusion: 1) changes in serum concentrations of iodothyronines in umbilical cord and during postnatal life indicate that maturation of extrathyroidal type I-iodothyronine monodeiodinase (MD) accelerates, starting at 30 weeks of PA; 2) high levels of type III-MD activity in fetal tissues prevent the rise of serum T-3, whereas they maintain high levels of rT3 during intrauterine life; 3) an important mechanism leading to the transition from the fetal to the postnatal thyroid hormone balance is a sudden decrease in type III-MD activity; iv) because placenta contains a high amount of type III-MD, it is conceivable that placenta contributes to maintain low T-3 and high rT3 serum concentrations during fetal Life and that its removal at birth is responsible for most changes in iodothyronine metabolism occurring afterwards.