Ergodicity and weak-mixing of homogeneous extensions of measure-preserving transformations with applications to Markov shifts

被引:5
作者
Noorani, MSM
机构
[1] Department of Mathematics, Faculty of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
来源
MONATSHEFTE FUR MATHEMATIK | 1997年 / 123卷 / 02期
关键词
measure-preserving transformations; homogeneous extensions; ergodicity; weak-mixing; Markov shifts;
D O I
10.1007/BF01305969
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a homogeneous extension S' of a measure-preserving transformation T, we provide necessary and sufficient conditions for the ergodicity and weak-mixing of S' in terms of functional equations. We then apply our findings to the case when Tis a Markov shift and the associated skewing function of S' depends on a finite number of coordinates. In this case, we obtain a simplification to the appropriate functional equations.
引用
收藏
页码:149 / 170
页数:22
相关论文
共 19 条
[1]  
ADLER R, 1995, ERGOD THEOR DYN, V5, P485
[2]  
[Anonymous], 1981, TOPICS ERGODIC THEOR
[3]  
Cornfeld I. P., 1982, Ergodic Theory
[4]  
Denker M., 1976, LECT NOTES MATH, V527
[5]   STRICT ERGODICITY AND TRANSFORMATION OF TORUS [J].
FURSTENBERG, H .
AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (04) :573-&
[6]  
HEWITT E, 1970, ABSTRACT HARMONIC AN, V2
[7]  
JONES R, 1972, COMPOS MATH, V25, P135
[8]  
KAKUTANI S, 1950, 2ND P BERK S MATH ST, P247
[9]  
KEYNES HB, 1976, COMPOS MATH, V32, P53
[10]  
KEYNES HB, 1980, LECT NOTES MATH, V819